Previous |  Up |  Next

Article

Title: The dual notion of prime submodules (English)
Author: Yassemi, Siamak
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 273-278
Summary lang: English
.
Category: math
.
Summary: In this paper the concept of the second submodule (the dual notion of prime submodule) is introduced. (English)
Keyword: prime submodule
Keyword: second submodule
Keyword: injective and flat module
MSC: 13C11
MSC: 13C13
idZBL: Zbl 1090.13005
idMR: MR1879449
.
Date available: 2008-06-06T22:29:05Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107804
.
Reference: [1] Lu C.-P.: Prime submodules of modules.Comment. Math. Univ. St. Pauli 33 (1984), 61–69. Zbl 0575.13005, MR 0741378
Reference: [2] Lu C.-P.: Spectra of modules.Commun. Algebra 23 (1995), 3741–3752. Zbl 0853.13011, MR 1348262
Reference: [3] MacDonald I.-G.: Secondary representation of modules over a commutative ring.Sympos. Math. XI (1973), 23–43. Zbl 0271.13001, MR 0342506
Reference: [4] Marcelo A., Masque J.: Prime submodules, the descent invariant, and modules of finite length.J. Algebra 189 (1997), 273–293. Zbl 0878.13005, MR 1438177
Reference: [5] Matsumura H.: Commutative ring theory.Cambridge University Press, Cambridge 1986. Zbl 0603.13001, MR 0879273
Reference: [6] McCasland R. L., Smith P. F.: Prime submodules of Noetherian modules.Rocky Mountain J. Math. 23 (1993), 1041–1062. Zbl 0814.16017, MR 1245463
Reference: [7] Rotman J. J.: An introduction to homological algebra.Academic Press, 1979. Zbl 0441.18018, MR 0538169
Reference: [8] Tiras Y., Tercan A., Harmanci A.: Prime modules.Honam Math. J. 18 (1996), 5–15. Zbl 0948.13004, MR 1402357
Reference: [9] Vasconcelos W.: On finitely generated flat modules.Trans. Amer. Math. Soc. 138 (1969), 505–512. Zbl 0238.13011, MR 0238839
Reference: [10] Yassemi S.: Coassociated primes of modules over commutative rings.Math. Scand. 10 (1997), 175–187. MR 1481103
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_3.pdf 282.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo