Previous |  Up |  Next

Article

Title: The contact system on the $(m, \ell )$-jet spaces (English)
Author: Muñoz, J.
Author: Muriel, F. J.
Author: Rodríguez, J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 291-300
Summary lang: English
.
Category: math
.
Summary: This paper is a continuation of [MMR:98], where we give a construction of the canonical Pfaff system $\Omega (M_m^\ell )$ on the space of $(m,\ell )$-velocities of a smooth manifold $M$. Here we show that the characteristic system of $\Omega (M_m^\ell )$ agrees with the Lie algebra of $\operatorname{Aut}({\mathbb R}_m^\ell )$, the structure group of the principal fibre bundle ${\check{M}}_m^\ell \longrightarrow J_m^\ell (M)$, hence it is projectable to an irreducible contact system on the space of $(m,\ell )$-jets ($=\ell $-th order contact elements of dimension $m$) of $M$. Furthermore, we translate to the language of Weil bundles the structure form of jet fibre bundles defined by Goldschmidt and Sternberg in [Gol:Ste:73]. (English)
Keyword: near points
Keyword: jets
Keyword: contact elements
Keyword: contact system
Keyword: velocities
MSC: 58A17
MSC: 58A20
idZBL: Zbl 1090.58006
idMR: MR1879452
.
Date available: 2008-06-06T22:29:14Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107807
.
Reference: [1] Ehresmann C.: Introduction à la théorie des structures infinitesimales et des pseudo-groupes de Lie.Colloque de Géometrie Différentielle, C.N.R.S. (1953), 97–110. MR 0063123
Reference: [2] Goldschmidt H., Sternberg S.: The Hamilton–Cartan formalism in the calculus of variations.Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. Zbl 0243.49011, MR 0341531
Reference: [3] Grigore D. R., Krupka D.: Invariants of velocities and higher order Grassmann bundles.J. Geom. Phys. 24 (1998), 244–264. Zbl 0898.53013, MR 1491556
Reference: [4] Jacobson N.: Lie algebras.John Wiley & Sons, Inc., New York, 1962. Zbl 0121.27504, MR 0143793
Reference: [5] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry.Springer-Verlag, New York, 1993. Zbl 0782.53013, MR 1202431
Reference: [6] Morimoto A.: Prolongation of connections to bundles of infinitely near points.J. Differential Geom. 11 (1976), 479–498. Zbl 0358.53013, MR 0445422
Reference: [7] Muñoz J., Muriel F. J., Rodríguez J.: Weil bundles and jet spaces.Czechoslovak Math. J. 50 (125) (2000), 721–748. Zbl 1079.58500, MR 1792967
Reference: [8] Muñoz J., Muriel F. J., Rodríguez J.: The contact system on the spaces of $(m,\ell )$-velocities.Proceedings of the 7th International Conference Differential Geometry and Applications (Brno, 1998) (1999), 263–272.
Reference: [9] Weil A.,: Théorie des points proches sur les variétés différentiables.Colloque de Géometrie Différentielle, C.N.R.S. (1953), 111–117. Zbl 0053.24903, MR 0061455
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_6.pdf 413.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo