Previous |  Up |  Next

Article

Title: Some equalities for generalized inverses of matrix sums and block circulant matrices (English)
Author: Tian, Yongge
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 301-306
Summary lang: English
.
Category: math
.
Summary: Let $ A_1, A_2,\cdots , A_n $ be complex matrices of the same size. We show in this note that the Moore-Penrose inverse, the Drazin inverse and the weighted Moore-Penrose inverse of the sum $ \sum _{t=1}^{n} A_t$ can all be determined by the block circulant matrix generated by $ A_1, A_2, \cdots , A_n$. In addition, some equalities are also presented for the Moore-Penrose inverse and the Drazin inverse of a quaternionic matrix. (English)
Keyword: block circulant matrix
Keyword: Moore-Penrose inverse
Keyword: Drazin inverse
Keyword: weighted Moore-Penrose inverse
Keyword: quaternionic matrix
MSC: 15A09
MSC: 15A23
idZBL: Zbl 1090.15005
idMR: MR1879453
.
Date available: 2008-06-06T22:29:21Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107808
.
Reference: [1] Bell C. L.: Generalized inverses of circulant and generalized circulant matrices.Linear Algebra Appl. 39 (1981), 133–142. Zbl 0465.15003, MR 0625244
Reference: [2] Ben-Israel A., Greville T. N. E.: Generalized Inverses: Theory and Applications.R. E. Krieger Publishing Company, New York, 1980. Zbl 0451.15004, MR 0587113
Reference: [3] Davis P. J.: Circulant Matrices.Wiley, New York, 1979. Zbl 0418.15017, MR 0543191
Reference: [4] Searle S. R.: On inverting circulant matrices.Linear Algebra Appl. 25 (1979), 77–89. Zbl 0397.15004, MR 0528714
Reference: [5] Smith R. L.: Moore-Penrose inverses of block circulant and block $k$-circulant matrices.Linear Algebra Appl. 16 (1979), 237–245. MR 0469933
Reference: [6] Tian Y.: The Moore-Penrose inverses of $ m \times n $ block matrices and their applications.Linear Algebra Appl. 283 (1998), 35–60. Zbl 0932.15004, MR 1657194
Reference: [7] Tian Y.: Universal similarity factorization equalities over real Clifford algebras.Adv. Appl. Clifford Algebras 8 (1998), 365–402. Zbl 0926.15026, MR 1698292
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_7.pdf 315.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo