Previous |  Up |  Next

Article

Title: Prolongation of second order connections to vertical Weil bundles (English)
Author: Cabras, Antonella
Author: Kolář, Ivan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 333-347
Summary lang: English
.
Category: math
.
Summary: We study systematically the prolongation of second order connections in the sense of C. Ehresmann from a fibered manifold into its vertical bundle determined by a Weil algebra $A$. In certain situations we deduce new properties of the prolongation of first order connections. Our original tool is a general concept of a $B$-field for another Weil algebra $B$ and of its $A$-prolongation. (English)
Keyword: non-holonomic jet
Keyword: Weil bundle
Keyword: Weil field
Keyword: second order connection
Keyword: prolongation of connections
MSC: 53C05
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1090.58003
idMR: MR1879456
.
Date available: 2008-06-06T22:29:32Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107811
.
Reference: [1] Cabras, A., Kolář, I.: Prolongation of tangent valued forms to Weil bundles.Arch. Math. (Brno) 31 (1995), 139–145. MR 1357981
Reference: [2] Cabras, A., Kolář, I.: On the second order absolute differentiation.Suppl. Rendiconti Circolo Mat. Palermo, Serie II 59 (1999), 123–133. MR 1692263
Reference: [3] Cabras, A., Kolář, I.: Second order connections on some functional bundles.Arch. Math. (Brno) 35 (1999), 347–365. MR 1744522
Reference: [4] Cabras, A., Kolář, I.: Prolongation of projectable tangent valued forms.to appear in Rendiconti Palermo. MR 1942654
Reference: [5] Doupovec M., Kolář, I.: Iteration of fiber product preerving bundle functors.to appear. MR 1872045
Reference: [6] Ehresmann, C.: Extension du calcul des jets aux jets non holonomes.CRAS Paris 239 (1954), 1762–1764. Zbl 0057.15603, MR 0066734
Reference: [7] Ehresmann, C.: Sur les connexions d’ordre supérieur.Atti del V$^\circ $ Cong. dell’Unione Mat. Italiana, 1955, Roma Cremonese 1956, 344–346.
Reference: [8] Goldschmidt, H., Sternberg, S.: The Hamilton formalism in the calculus of variations.Ann. Inst. Fourier (Grenoble) 23 (1973), 203–267. MR 0341531
Reference: [9] Kolář, I.: Higher order absolute differentiation with respect to generalized connections.Differential Geometry, Banach Center Publications 12 (1984), 153–162. MR 0961078
Reference: [10] Kolář, I.: An infinite dimensional motivation in higher order geometry.Proc. Conf. Diff. Geom. and Applications 1995, Masaryk University, Brno 1996, 151–159. MR 1406335
Reference: [11] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.Springer--Verlag, 1993. MR 1202431
Reference: [12] Kolář, I., Mikulski, W. M.: Natural lifting of connections to vertical bundles.Suppl. Rendiconti Circolo Mat. Palermo, Serie II 63 (2000), 97–102. MR 1758084
Reference: [13] Libermann, P.: Introduction to the theory of semi-holonomic jets.Arch. Math. (Brno) 33 (1997), 173–189. Zbl 0915.58004, MR 1478771
Reference: [14] Mangiarotti, L., Modugno, M.: Graded Lie algebras and connections on a fibered space.Journ. Math. Pures et Appl. 83 (1984), 111–120. MR 0776913
Reference: [15] Pradines, J.: Représentation des jets non holonomes par les morphisms vectoriels doubles soudés.CRAS Paris, série A278 (1974), 1523–1526. MR 0388432
Reference: [16] Tomáš, J.: On quasijet bundles.to appear in Rendiconti Palermo. MR 1764094
Reference: [17] Virsik, J.: On the holonomity of higher order connections.Cahiers Topol. Géom. Diff. 12 (1971), 197–212. Zbl 0223.53026, MR 0305294
Reference: [18] Weil, A.: Théorie des points proches sur les variétés différentielles.Colloque de topol. et géom. diff., Strasbourg (1953), 111-117. MR 0061455
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_10.pdf 403.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo