Previous |  Up |  Next

Article

Title: Random fixed points of increasing compact random maps (English)
Author: Beg, Ismat
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 37
Issue: 4
Year: 2001
Pages: 329-332
Summary lang: English
.
Category: math
.
Summary: Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $. (English)
Keyword: random fixed point
Keyword: random map
Keyword: measurable space
Keyword: ordered Banach space
MSC: 47H10
MSC: 47H40
MSC: 60H25
idZBL: Zbl 1068.47079
idMR: MR1879455
.
Date available: 2008-06-06T22:29:29Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107810
.
Reference: [1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions.Math. Japon. 46 (1) (1997), 151–155. Zbl 0896.47053, MR 1466128
Reference: [2] Beg I., Shahzad N.: Some random approximation theorem with applications.Nonlinear Anal. 35 (1999), 609–616. MR 1656922
Reference: [3] Bharucha-Reid A. T.: Random Integral Equations.Academic Press, New York , 1972. Zbl 0327.60040, MR 0443086
Reference: [4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), 641–657. Zbl 0339.60061, MR 0413273
Reference: [5] Hans O.: Reduzierende zulliällige transformaten.Czechoslovak Math. J. 7 (1957), 154–158. MR 0090161
Reference: [6] Hans O.: Random operator equations.In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. Zbl 0132.12402, MR 0146665
Reference: [7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273. Zbl 0407.60069, MR 0528687
Reference: [8] Jameson G.: Ordered Linear Spaces.Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. Zbl 0196.13401, MR 0438077
Reference: [9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators.Proc. Amer. Math. Soc. 125 (1997), 515–521. MR 1350953
Reference: [10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces.Proc. Amer. Math. Soc. 97 (1986), 507–514. Zbl 0606.60058, MR 0840638
Reference: [11] Schaefer H. H.: Topological Vector Spaces.Springer Verlag, New York, 1971. Zbl 0217.16002, MR 0342978
Reference: [12] Sehgal V. M., Waters C.: Some random fixed point theorems.Contemporary Math. 21 (1983), 215–218. Zbl 0541.47041, MR 0729519
Reference: [13] Špaček A.: Zufällige gleichungen.Czechoslovak Math. J. 5 (1955), 462–466. Zbl 0068.32701, MR 0079854
Reference: [14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations.Stochastic Anal. Appl. 15 (1) (1997), 103–123. MR 1429860
Reference: [15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces.Springer Verlag, Berlin, 1997. Zbl 0878.47022, MR 1631533
.

Files

Files Size Format View
ArchMathRetro_037-2001-4_9.pdf 258.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo