Title:
|
Random fixed points of increasing compact random maps (English) |
Author:
|
Beg, Ismat |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
37 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
329-332 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $(\Omega ,\Sigma )$ be a measurable space, $(E,P)$ be an ordered separable Banach space and let $[a,b]$ be a nonempty order interval in $E$. It is shown that if $f:\Omega \times [a,b]\rightarrow E$ is an increasing compact random map such that $a\le f(\omega ,a)$ and $f(\omega ,b)\le b$ for each $\omega \in \Omega $ then $f$ possesses a minimal random fixed point $\alpha $ and a maximal random fixed point $\beta $. (English) |
Keyword:
|
random fixed point |
Keyword:
|
random map |
Keyword:
|
measurable space |
Keyword:
|
ordered Banach space |
MSC:
|
47H10 |
MSC:
|
47H40 |
MSC:
|
60H25 |
idZBL:
|
Zbl 1068.47079 |
idMR:
|
MR1879455 |
. |
Date available:
|
2008-06-06T22:29:29Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107810 |
. |
Reference:
|
[1] Beg I.: Random fixed points of random operators satisfying semicontractivity conditions.Math. Japon. 46 (1) (1997), 151–155. Zbl 0896.47053, MR 1466128 |
Reference:
|
[2] Beg I., Shahzad N.: Some random approximation theorem with applications.Nonlinear Anal. 35 (1999), 609–616. MR 1656922 |
Reference:
|
[3] Bharucha-Reid A. T.: Random Integral Equations.Academic Press, New York , 1972. Zbl 0327.60040, MR 0443086 |
Reference:
|
[4] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), 641–657. Zbl 0339.60061, MR 0413273 |
Reference:
|
[5] Hans O.: Reduzierende zulliällige transformaten.Czechoslovak Math. J. 7 (1957), 154–158. MR 0090161 |
Reference:
|
[6] Hans O.: Random operator equations.In: Proc. 4th Berkeley Symposium on Mathematical Statistics and Probability Vol. II, Part I, 185–202, University of California Press, Berkeley 1961. Zbl 0132.12402, MR 0146665 |
Reference:
|
[7] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273. Zbl 0407.60069, MR 0528687 |
Reference:
|
[8] Jameson G.: Ordered Linear Spaces.Lecture Notes, Vol. 141, Springer Verlag, New York, 1970. Zbl 0196.13401, MR 0438077 |
Reference:
|
[9] Lishan L.: Some random approximations and random fixed point theorems for 1-set-contractive random operators.Proc. Amer. Math. Soc. 125 (1997), 515–521. MR 1350953 |
Reference:
|
[10] Papageorgiou N. S.: Random fixed point theorems for measurable multifunctions in Banach spaces.Proc. Amer. Math. Soc. 97 (1986), 507–514. Zbl 0606.60058, MR 0840638 |
Reference:
|
[11] Schaefer H. H.: Topological Vector Spaces.Springer Verlag, New York, 1971. Zbl 0217.16002, MR 0342978 |
Reference:
|
[12] Sehgal V. M., Waters C.: Some random fixed point theorems.Contemporary Math. 21 (1983), 215–218. Zbl 0541.47041, MR 0729519 |
Reference:
|
[13] Špaček A.: Zufällige gleichungen.Czechoslovak Math. J. 5 (1955), 462–466. Zbl 0068.32701, MR 0079854 |
Reference:
|
[14] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations.Stochastic Anal. Appl. 15 (1) (1997), 103–123. MR 1429860 |
Reference:
|
[15] Zaanen A. C. : Introduction to Operator Theory in Riesz Spaces.Springer Verlag, Berlin, 1997. Zbl 0878.47022, MR 1631533 |
. |