Previous |  Up |  Next

Article

Title: Asymptotic properties of solutions of second-order difference equations (English)
Author: Morchało, Jarosław
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 15-26
Summary lang: English
.
Category: math
.
Summary: Using the method of variation of constants, discrete inequalities and Tychonoff’s fixed-point theorem we study problem asymptotic equivalence of second order difference equations. (English)
Keyword: asymptotic equivalence
Keyword: difference inequalities
MSC: 39A10
idZBL: Zbl 1087.39003
idMR: MR1899564
.
Date available: 2008-06-06T22:29:38Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107815
.
Reference: [1] Brauer, F., Wang, J. S.: On the asymptotic relationship between solutions of two systems of ordinary differential equation.J. Differential Equations 6 (1969), 527–543. MR 0252765
Reference: [2] Hallam, T. G.: Asymptotic relationskips between the solutions of two second order differential equations.Ann. Polon. Math. 24 (1971), 295–300. MR 0301316
Reference: [3] Lakshmikantham, V., Leela, S.: Differential and Integral Ineqalities.vol. I, New York and London, Academic Press 1969.
Reference: [4] Morchało, J.: Asymptotic equivalence of Volterra difference systems.Publ. Mat. 39 (1995), 301–312. MR 1370888
Reference: [5] Morchało, J.: Asymptotic equivalence of difference equations.Math. Slovaca 48 (1998), 57–68. MR 1635239
Reference: [6] Morchało, J.: Asymptotic equivalence of second-order difference equations.J. Math. Anal. Appl. 238 (1999), 91–100. MR 1711480
Reference: [7] Onuchic, N.: Relationship among the solutions of two systems or ordinary differential equation.Michigan Math. J. 10 (1963), 129–139. MR 0165192
Reference: [8] Ráb, M.: Asymptotic relationships between the solutions of two systems of differential equations.Ann. Polon. Math. 30 (1974), 119–124. MR 0355217
Reference: [9] Svec, M.: Asymptotic relationship between solutions of two systems of differential equations.Czechoslovak Math. J. 24 (99), No. 1 (1974), 44–58. Zbl 0322.34037, MR 0348202
Reference: [10] Talpalaru, P.: Asymptotic behaviour of perturbed difference equations.Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Ser. VIIILXIV (1979), 563–571. Zbl 0441.39006, MR 0561940
Reference: [11] Kuben, J.: Asymptotic equivalence of second order differential equations.Czechoslovak Math. J. 34 (109) (1984), 189–201. Zbl 0555.34048, MR 0743485
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_2.pdf 332.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo