Previous |  Up |  Next

Article

Title: On the asymptotic convergence of the polynomial collocation method for singular integral equations and periodic pseudodifferential equations (English)
Author: Fedotov, A. I.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: We prove the convergence of polynomial collocation method for periodic singular integral, pseudodifferential and the systems of pseudodifferential equations in Sobolev spaces $H^{s}$ via the equivalence between the collocation and modified Galerkin methods. The boundness of the Lagrange interpolation operator in this spaces when $s>1/2$ allows to obtain the optimal error estimate for the approximate solution i.e. it has the same rate as the best approximation of the exact solution by the polynomials. (English)
Keyword: singular integral equations
Keyword: periodic pseudodifferential equations
Keyword: Galerkin method
Keyword: collocation method
MSC: 45E05
MSC: 47G30
MSC: 65N35
MSC: 65R20
idZBL: Zbl 1087.65109
idMR: MR1899563
.
Date available: 2008-06-06T22:29:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107814
.
Reference: [1] Agranovich M. S.: Spectral properties of elliptic pseudo-differential operators on a closed curve.Funct. Anal. Appl. 13 (1979), 279–281. MR 0554412
Reference: [2] Arnold D. N., Wendland W. L.: On the asymptotic convergence of collocation methods.Math. of Comp. 41, No 164(1983), 349–381. Zbl 0541.65075, MR 0717691
Reference: [3] Arnold D. N., Wendland W. L.: The convergence of spline collocation for strongly elliptic equations on curves.Number. Math. 46 (1985), 317–341. Zbl 0592.65077, MR 0808553
Reference: [4] Elshner J.: On spline collocation for singular integral equations on an interval.Semin. Anal. Oper. Equat. and Numer. Anal. 1985/86. (1986), 31–54. MR 0890525
Reference: [5] Elshner J.: On spline approximation for a class of integral equations III. Collocation methods with piecewise linear splines.Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87. (1987), 25–40. MR 0941601
Reference: [6] Elshner J.: On spline approximation for singular integral equations on an interval.Preprint Akad. Wiss. DDR, Karl Weierstrass Inst. Nath. 4, 1987.
Reference: [7] Elshner J.: On spline approximation for singular integral equations on an interval.Math. Nachr. 139 (1988), 309–319. MR 0978129
Reference: [8] Gakhov F. D.: Boundary Value Problems.Pergamon Press, Oxford 1966. Zbl 0141.08001, MR 0198152
Reference: [9] Gohberg I., Fel’dman I.: Convolution Equations and Projection Methods for their Solution.AMS Translations of Mathematical Monographs 41, Amer. Math. Soc., Providence, RI, 1974. Zbl 0278.45008, MR 0355675
Reference: [10] Gohberg I., Krupnik N.: Einführung in die Theorie der eindimensionalen singulären Integraloperatoren.Birkhäuser, Basel, Boston, Stuttgart, 1979. Zbl 0413.47040, MR 0545507
Reference: [11] Golberg M. A.: The convergence of several algorithms for solving integral equations with finite-part integrals.J. Integral Equations 5 (1983), 329–340. Zbl 0529.65079, MR 0714459
Reference: [12] Ivanov V. V.: The approximate solutions of the singular integral equations.PhD’s Thesis, Moscow 1956 (in Russian).
Reference: [13] McLean W., Prössdorf S. B., Wendland W. L.: Pointwise error estimate for the trigonometric collocation method applied to singular integral equations and periodic pseudodifferential equations.J. Integral Equations Appl. 2, No 1(1989), 125–146. MR 1033207
Reference: [14] McLean W., Wendland W. L.: Trigonometric approximation of solutions of periodic pseudodifferential equations.Operation Theory: Advances and Applications 41 (1989), 359–383. Zbl 0693.65093, MR 1038346
Reference: [15] Mikhlin S. G., Prössdorf S. B.: Singular integral operators.Springer-Verlag, 1986. Zbl 0636.47039, MR 0867687
Reference: [16] Muskhelishvili N. I.: Singular Integral Equations.2nd Edn. Noordhoff, Groningen 1953. Zbl 0051.33203, MR 0355494
Reference: [17] Noether F.: Über eine Klasse singulärer Integralgleichungen.Math. Ann. 82 (1921), 42-63. MR 1511970
Reference: [18] Prössdorf S. B.: On spline collocation of singular integral equations on non uniform mesh.Semin. Anal. Oper. Equat. and Numer. Anal. 1986/87 (1987), 123–137.
Reference: [19] Prössdorf S. B.: Recent results in numerical analysis for singular integral equations.Proc. 9th Conf. Probl. and Meth. Math. Phys. (TPM) Karl-Marx-Stadt, June 27 - July 1 (1988), 224–234. MR 1087326
Reference: [20] Prössdorf S. B., Schmidt G.: A finite element collocation method for singular integral equations.Math. Nachr. 100 (1981), 33–60. Zbl 0543.65089, MR 0632620
Reference: [21] Saranen J., Wendland W. L.: The Fourier series representation of pseudo-differential operators on closed curves.Complex Variables 8 (1987), 55–64. Zbl 0577.47046, MR 0891751
Reference: [22] Schmidt G.: On spline collocation for singular integral equations.Math. Nachr. 111 (1983), 177–196. Zbl 0543.65088, MR 0725777
Reference: [23] Stein E. M.: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, Princeton, 1970. Zbl 0207.13501, MR 0290095
Reference: [24] Wendland W. L.: Strongly elliptic boundary integral equations.in “The State of the Art in Numerical Analysis” (A. Iserles and M.J.D. Powell, eds.) Claredon Press, Oxford, 1987. Zbl 0615.65119, MR 0921677
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_1.pdf 342.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo