Previous |  Up |  Next

Article

Title: On the transitive and $\omega$-limit points of the continuous mappings of the circle (English)
Author: Pokluda, David
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 49-52
Summary lang: English
.
Category: math
.
Summary: We extend the recent results from the class $\mathcal {C}(I,I)$ of continuous maps of the interval to the class $\mathcal {C}(\mathbb {S},\mathbb {S})$ of continuous maps of the circle. Among others, we give a characterization of $\omega $-limit sets and give a characterization of sets of transitive points for these maps. (English)
MSC: 37B25
MSC: 37E10
idZBL: Zbl 1087.37033
idMR: MR1899567
.
Date available: 2008-06-06T22:29:47Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107818
.
Reference: [1] Agronsky S. J., Bruckner A. M., Ceder J. G., Pearson T. L.: The structure of $\omega $-limit sets for continuous functions.Real Anal. Exchange 15 (1989/1990), 483–510. MR 1059418
Reference: [2] Alsedà L., Llibre J., Misiurewicz M.: Combinatorial Dynamics and Entropy in Dimension One.World Scientific Publ., Singapore 1993. MR 1255515
Reference: [3] Block L. S., Coppel W. A.: Dynamics in One Dimension.Lecture Notes in Math., vol. 1513, Springer, Berlin, 1992. Zbl 0746.58007, MR 1176513
Reference: [4] Blokh A. M.: On transitive mappings of one-dimensional ramified manifolds.in Differential-difference equations and problems of mathematical physics, Inst. Mat. Acad. Sci., Kiev, 1984, 3–9 (Russian). Zbl 0605.58007, MR 0884346
Reference: [5] Kolyada S., Snoha, L’.: Some aspects of topological transitivity – a survey.Iteration Theory (ECIT 94), Grazer Math. Ber. 334 (1997), 3–37. Zbl 0907.54036, MR 1644768
Reference: [6] Pokluda D., Smítal J.: A “universal” dynamical system generated by a continuous map of the interval.Proc. Amer. Math. Soc. 128 (2000), 3047–3056. Zbl 0973.37025, MR 1712885
Reference: [7] Pokluda D.: On the structure of sets of transitive points for continuous maps of the interval.Real Anal. Exchange, 25 (1999/2000), 45–48.
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_5.pdf 322.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo