Previous |  Up |  Next

Article

Title: Common fixed points of Greguš type multi-valued mappings (English)
Author: Rashwan, R. A.
Author: Ahmed, Magdy A.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 1
Year: 2002
Pages: 37-47
Summary lang: English
.
Category: math
.
Summary: This work is considered as a continuation of [19,20,24]. The concepts of $\delta $-compatibility and sub-compatibility of Li-Shan [19, 20] between a set-valued mapping and a single-valued mapping are used to establish some common fixed point theorems of Greguš type under a $\phi $-type contraction on convex metric spaces. Extensions of known results, especially theorems by Fisher and Sessa [11] (Theorem B below) and Jungck [16] are thereby obtained. An example is given to support our extension. (English)
Keyword: common fixed points
Keyword: $\delta $-compatible mappings
Keyword: sub-compatible mappings
Keyword: complete convex metric spaces
MSC: 47H04
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1088.54506
idMR: MR1899566
.
Date available: 2008-06-06T22:29:44Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107817
.
Reference: [1] Banas, J. and El-Sayed , W. G.: Solvability of Hammerstein integral equation in the class of functions of locally bounded variation.Boll. Un. Mat. Ital. 7, 5-B (1991), 893–904. MR 1146779
Reference: [2] Beg, I. and Shahzad, W.: An application of a fixed point theorem to best simultaneous approximation.Approx. Theory Appl.$ \& $ its Appl. 10, No. 3 (1994), 1–4. MR 1308834
Reference: [3] Chen, M. J. and Park, S.: A unified approach to generalized quasi-variational inequalities.Comm. Appl. Nonlinear Anal. 4, No. 2 (1997), 103–118. MR 1442102
Reference: [4] Ciric, L. B.: On a common fixed point theorem of a Greguš type.Publ. Inst. Math. (Beograd) 49, No. 63 (1991), 174–178. Zbl 0753.54023, MR 1127395
Reference: [5] Ciric, L. B.: On Diviccaro, Fisher and Sessa open questions.Arch. Math. (Brno) 29, No.3-4 (1993), 145–152. Zbl 0810.47051, MR 1263115
Reference: [6] Ciric, L. B.: On some discontinuous fixed point mappings in convex metric spaces.Czechoslovak Math. J. 43, No. 118 (1993), 319–326. Zbl 0814.47065, MR 1211753
Reference: [7] Ciric, L. B.: Nonexpansive type mappings and a fixed point theorem in convex metric space.Rend. Accad. Naz. Sci. XL Mem. Math. Appl. (5) 15, fasc. 1 (1995), 263–271. MR 1387560
Reference: [8] Davies, R. O. and Sessa, S.: A common fixed point theorem of Greguš type for compatible mappings.Facta Univ. Ser. Math. Inform. 7 (1992), 99–106. MR 1346598
Reference: [9] Diviccaro, M. L., Fisher, B. and Sessa, S.: A common fixed point theorem of Greguš type.Publ. Math. Debrecen 34, No. 1-2 (1987), 83–89. MR 0901008
Reference: [10] Fisher, B.: Common fixed points of mappings and set-valued mappings.Rostock. Math. Kolloq. 18 (1981), 69–77. Zbl 0479.54025, MR 0655385
Reference: [11] Fisher, B. and Sessa, S.: On a fixed point theorem of Greguš.Int. J. Math. Math. Sci. 9, No. 1 (1986), 23–28. MR 0837098
Reference: [12] Fisher, B. and Sessa, S.: Common fixed point theorems for weakly commuting mappings.Period. Math. Hungar. 20, No. 3 (1989), 207–218. MR 1028958
Reference: [13] Greguš, M.: A fixed point theorem in Banach space.Boll. Un. Math. Ital. 17- A, No. 5 (1980), 193–198. MR 0562137
Reference: [14] Guay, M. D., Singh, K. L. and Whitfield, J. H.: Fixed point theorems for nonexpansive mappings in convex metric spaces.Proc. Conference on Nonlinear Analysis 60 (1982), 179–189. MR 0689554
Reference: [15] Jungck, G.: Compatible mapppings and common fixed points.Int. J. Math. Math. Sci. 9 (1986), 771–779. MR 0870534
Reference: [16] Jungck, G.: On a fixed point theorem of Fisher and Sessa.Int. J. Math. Math. Sci. 13 (1990), 497–500. Zbl 0705.54034, MR 1068012
Reference: [17] Jungck, G. and Rhoades, B. E.: Some fixed point theorems for compatible maps.Int. J. Math. Math. Sci. 16, No. 3 (1993), 417–428. MR 1225486
Reference: [18] Khan, M. S. and Imdad, M.: A common fixed point theorem for a class of mappings.Indian J. Pure Appl. Math. 14 (1983), 1220–1227. MR 0720454
Reference: [19] Liu Li-Shan: On common fixed points of single-valued mappings and set-valued mappings.J. Qufu Norm. Univ. Nat. Sci. Ed. 18, No. 1 (1992), 6–10. MR 1160972
Reference: [20] Liu Li-Shan: Common fixed point theorems for (sub) compatible and set-valued generalized nonexpansive mappings in convex metric spaces.Appl. Math. Mech. 14, No. 7 (1993), 685–692. MR 1247315
Reference: [21] Mukherjee, R. N. and Verma, V.: A note on fixed point theorem of Greguš.Math. Japon. 33 (1988), 745–749. MR 0972387
Reference: [22] Murthy, P. P., Cho, Y. J. and Fisher, B.: Common fixed points of Greguš type mappings.Glas. Math. 30, No. 50 (1995), 335–341. MR 1381358
Reference: [23] Pathak, H. K. and Fisher, B.: Common fixed point theorems with applications in dynamic programming.Glas. Math. 31, No. 51 (1996), 321–328. MR 1444983
Reference: [24] Rashwan, R. A. and Ahmed, M. A.: Common fixed points for generalized contraction mappings in convex metric spaces.J. Qufu Norm. Univ. Ed. 24, No. 3 (1998), 15–21. MR 1665104
Reference: [25] Sessa, S.: On a weak commutativity condition of mappings in fixed point considerations.Publ. Inst. Math. (Beograd) 32, No. 46 (1982), 149–153. Zbl 0523.54030, MR 0710984
Reference: [26] Sessa, S. and Fisher, B.: Common fixed points of two mappings on Banach spaces.J. Math. Phys. Sci. 18 (1984), 353–360. MR 0803962
Reference: [27] Sessa, S., Khan, M. S. and Imdad, M.: Common fixed point theorem with a weak commutativity condition.Glas. Mat. 21, No. 41 (1986), 225–235. MR 0866767
Reference: [28] Takahashi, W.: A convexity in metric space and nonexpansive mappings.Kodai Math. Semin. Rep. 22 (1970), 142–149. Zbl 0268.54048, MR 0267565
.

Files

Files Size Format View
ArchMathRetro_038-2002-1_4.pdf 320.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo