Previous |  Up |  Next

Article

Title: Existence of two solutions for quasilinear periodic differential equations with discontinuities (English)
Author: Papageorgiou, Nikolaos S.
Author: Papalini, Francesca
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 4
Year: 2002
Pages: 285-296
Summary lang: English
.
Category: math
.
Summary: In this paper we examine a quasilinear periodic problem driven by the one- dimensional $p$-Laplacian and with discontinuous forcing term $f$. By filling in the gaps at the discontinuity points of $f$ we pass to a multivalued periodic problem. For this second order nonlinear periodic differential inclusion, using variational arguments, techniques from the theory of nonlinear operators of monotone type and the method of upper and lower solutions, we prove the existence of at least two non trivial solutions, one positive, the other negative. (English)
Keyword: one dimensional $p$-Laplacian
Keyword: maximal monotone operator
Keyword: pseudomonotone operator
Keyword: generalized pseudomonotonicity
Keyword: coercive operator
Keyword: first nonzero eigenvalue
Keyword: upper solution
Keyword: lower solution
Keyword: truncation map
Keyword: penalty function
Keyword: multiplicity result
MSC: 34A36
MSC: 34B15
MSC: 34C25
idZBL: Zbl 1090.34013
idMR: MR1942658
.
Date available: 2008-06-06T22:31:00Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107842
.
Reference: [1] Ahmad S., Lazer A.: Critical point theory and a theorem of Amaral and Pera.Bollettino U.M.I. 6 (1984), 583–598. Zbl 0603.34036, MR 0774464
Reference: [2] Boccardo L., Drábek P., Giacchetti D., Kučera M.: Generalization of Fredholm alternative for some nonlinear boundary value problem.Nonlinear Anal. T.M.A. 10 (1986), 1083–1103. MR 0857742
Reference: [3] Dang H., Oppenheimer S. F.: Existence and uniqueness results for some nonlinear boundary value problems.J. Math. Anal. Appl. 198 (1996), 35–48. MR 1373525
Reference: [4] Del Pino M., Elgueta M., Manasevich R.: A homotopic deformation along p of a Leray Schauder degree result and existence for $(| u^{\prime } |^{p-2}u^{\prime })^{\prime }+ f(t,u)=0, u(0)=u(T)=0, p>1^*$.J. Differential Equations 80 (1989), 1–13. Zbl 0708.34019, MR 1003248
Reference: [5] Del Pino M., Manasevich R., Murua A.: Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e..Nonlinear Anal. T.M.A. 18 (1992), 79–92. Zbl 0761.34032, MR 1138643
Reference: [6] Drábek P.: Solvability of boundary value problems with homogeneous ordinary differential operator.Rend. Istit. Mat. Univ. Trieste 8 (1986), 105–124. MR 0928322
Reference: [7] Fabry C., Fayyad D.: Periodic solutions of second order differential equations with a $p$-Laplacian and asymmetric nonlinearities.Rend. Istit. Mat. Univ. Trieste 24 (1992), 207–227. Zbl 0824.34026, MR 1310080
Reference: [8] Fabry C., Mawhin J., Nkashama M. N.: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations.Bull. London Math. Soc. 18 (1986), 173–180. Zbl 0586.34038, MR 0818822
Reference: [9] Fonda A., Lupo D.: Periodic solutions of second order ordinary differential differential equations.Bollettino U.M.I. 7 (1989), 291–299. MR 1026756
Reference: [10] Gilbarg D., Trudinger N.: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, New York (1977). Zbl 0361.35003, MR 0473443
Reference: [11] Gossez J.-P., Omari P.: A note on periodic solutions for second order ordinary differential equation.Bollettino U.M.I. 7 (1991), 223–231.
Reference: [12] Guo Z.: Boundary value problems of a class of quasilinear differential equations.Diff. Integral Equations 6 (1993), 705–719. MR 1202567
Reference: [13] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume I: Theory.Kluwer, Dordrecht, The Netherlands (1997). Zbl 0887.47001, MR 1485775
Reference: [14] Hu S., Papageorgiou N. S.: Handbook of Multivalued Analysis, Volume II: Applications.Kluwer, Dordrecht, The Netherlands (2000). Zbl 0943.47037, MR 1741926
Reference: [15] Kesavan S.: Topics in Functional Analysis and Applications.Wiley, New York (1989). Zbl 0666.46001, MR 0990018
Reference: [16] Manasevich R., Mawhin J.: Periodic solutions for nonlinear systems with $p$-Laplacian like operators.J. Differential Equations 145 (1998), 367–393. MR 1621038
Reference: [17] Mawhin J., Willem M.: Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations.J. Differential Equations 2 (1984), 264–287. Zbl 0557.34036, MR 0741271
Reference: [18] Zeidler E.: Nonlinear Functional Analysis and its Applications II.Springer-Verlag, New York (1985). MR 0768749
.

Files

Files Size Format View
ArchMathRetro_038-2002-4_5.pdf 376.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo