Previous |  Up |  Next

Article

Title: On Ricci curvature of totally real submanifolds in a quaternion projective space (English)
Author: Liu, Ximin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 38
Issue: 4
Year: 2002
Pages: 297-305
Summary lang: English
.
Category: math
.
Summary: Let $M^n$ be a Riemannian $n$-manifold. Denote by $S(p)$ and $\overline{\operatorname{Ric}}(p)$ the Ricci tensor and the maximum Ricci curvature on $M^n$, respectively. In this paper we prove that every totally real submanifolds of a quaternion projective space $QP^m(c)$ satisfies $S\le ((n-1)c+\frac{n^2}{4}H^2)g$, where $H^2$ and $g$ are the square mean curvature function and metric tensor on $M^n$, respectively. The equality holds identically if and only if either $M^n$ is totally geodesic submanifold or $n=2$ and $M^n$ is totally umbilical submanifold. Also we show that if a Lagrangian submanifold of $QP^m(c)$ satisfies $\overline{\operatorname{Ric}}=(n-1)c+\frac{n^2}{4}H^2$ identically, then it is minimal. (English)
Keyword: Ricci curvature
Keyword: totally real submanifolds
Keyword: quaternion projective space
MSC: 53C26
MSC: 53C40
MSC: 53C42
idZBL: Zbl 1090.53052
idMR: MR1942659
.
Date available: 2008-06-06T22:31:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107843
.
Reference: [1] Chen B. Y.: Some pinching and classification theorems for minimal submanifolds.Arch. Math. 60 (1993), 568–578. Zbl 0811.53060, MR 1216703
Reference: [2] Chen B. Y.: Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimension.Glasgow Math. J. 41 (1999), 33–41. MR 1689730
Reference: [3] Chen B. Y.: On Ricci curvature of isotropic and Lagrangian submanifolds in the complex space forms.Arch. Math. 74 (2000), 154–160. MR 1735232
Reference: [4] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: Totally real submanifolds of $CP^n$ satisfying a basic equality.Arch. Math. 63 (1994), 553–564. MR 1300757
Reference: [5] Chen B. Y., Dillen F., Verstraelen L., Vrancken L.: An exotic totally real minimal immersion of $S^3$ and $CP^3$ and its characterization.Proc. Royal Soc. Edinburgh, Sect. A, Math. 126 (1996), 153–165. Zbl 0855.53011, MR 1378838
Reference: [6] Chen B. Y., Houh C. S.: Totally real submanifolds of a quaternion projective space.Ann. Mat. Pura Appl. 120 (1979), 185–199. Zbl 0413.53031, MR 0551066
Reference: [7] Ishihara S.: Quaternion Kaehlerian manifolds.J. Differential Geom. 9 (1974), 483–500. Zbl 0297.53014, MR 0348687
.

Files

Files Size Format View
ArchMathRetro_038-2002-4_6.pdf 333.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo