Previous |  Up |  Next

Article

Title: An extension of the method of quasilinearization (English)
Author: Jankowski, Tadeusz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 201-208
Summary lang: English
.
Category: math
.
Summary: The method of quasilinearization is a well–known technique for obtaining approximate solutions of nonlinear differential equations. This method has recently been generalized and extended using less restrictive assumptions so as to apply to a larger class of differential equations. In this paper, we use this technique to nonlinear differential problems. (English)
Keyword: quasilinearization
Keyword: monotone iterations
Keyword: quadratic convergence
MSC: 34A12
MSC: 34A45
idZBL: Zbl 1116.34304
idMR: MR2010721
.
Date available: 2008-06-06T22:41:50Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107867
.
Reference: [1] Bellman, R.: Methods of Nonlinear Analysis.Vol. II, Academic Press, New York 1973. Zbl 0265.34002, MR 0381408
Reference: [2] Bellman, R. and Kalaba, R.: Quasilinearization and Nonlinear Boundary Value Problems.American Elsevier, New York 1965. MR 0178571
Reference: [3] Jankowski, T. and Lakshmikantham, V.: Monotone iterations for differential equations with a parameter.J. Appl. Math. Stoch. Anal. 10 (1997), 273–278. MR 1468122
Reference: [4] Jankowski, T. and McRae, F. A.: An extension of the method of quasilinearization for differential problems with a parameter.Nonlinear Stud. 6 (1999), 21–44. MR 1691903
Reference: [5] Ladde, G. S., Lakshmikantham, V. and Vatsala, A. S.: Monotone Iterative Techniques for Nonlinear Differential Equations.Pitman 1985. MR 0855240
Reference: [6] Lakshmikantham, V. and Malek, S.: Generalized quasilenearization.Nonlinear World 1 (1994), 59–63. MR 1282859
Reference: [7] Lakshmikantham, V., Leela, S. and Sivasundaram, S.: Extensions of the Method of Quasilinearization.J. Optimization Theory Appl. Vol. 87 (1995), 379–401. MR 1358749
Reference: [8] Lakshmikantham, V. and Vatsala, A. S.: Generalized Quasilinearization for Nonlinear Problems.Kluwer Academic Publishers, Dordrecht 1998. MR 1640601
Reference: [9] Lakshmikantham, V., Leela, S. and McRae, F. A.: Improved Generalized Quasilinearization Method.Nonlinear Analysis 24 (1995), 1627–1637. MR 1328588
Reference: [10] Lakshmikantham, V. and Shahzad, N.: Further Generalization of Generalized Quasilinearization Method.J. Appl. Math. Stoch. Anal. 7 (1994), 545–552. MR 1310927
Reference: [11] Shahzad, N. and Vatsala, A. S.: An Extension of the Method of Generalized Quasilinearization for Second Order Boundary Value Problems.Appl. Anal. 58 (1995), 77–83. MR 1384590
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_6.pdf 194.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo