Previous |  Up |  Next

Article

Title: The canonical tensor fields of type $(1,1)$ on $(J^r(\odot ^2 T^{\ast }))^{\ast }$ (English)
Author: Michalec, Paweł
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 3
Year: 2003
Pages: 247-256
Summary lang: English
.
Category: math
.
Summary: We prove that every natural affinor on $(J^r( \odot ^2 T^{\ast }))^{\ast }(M)$ is proportional to the identity affinor if dim$M\ge 3$. (English)
Keyword: natural affinor
Keyword: natural bundle
Keyword: natural transformation
MSC: 58A20
MSC: 58A32
idZBL: Zbl 1112.58300
idMR: MR2010725
.
Date available: 2008-06-06T22:42:01Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107871
.
Reference: [1] Doupovec M., Kolář I.: Natural affinors on time-dependent Weil bundles.Arch. Math. (Brno) 27 (1991), 205-209. MR 1189217
Reference: [2] Doupovec M., Kurek J.: Torsions of connections of higher order cotangent bundles.Czech. Math. J. (to appear). MR 2018842
Reference: [3] Gancarzewicz J., Kolář I.: Natural affinors on the extended $r$-th order tangent bundles.Suppl. Rendiconti Circolo Mat. Palermo, 1993, 95-100. MR 1246623
Reference: [4] Kolář I., Modugno M.: Torsion of connections on some natural bundles.Diff. Geom. and Appl. 2(1992), 1-16. MR 1244453
Reference: [5] Kolář. I., Michor P. W., Slovák J.: Natural Operations in Differential Geometry.Springer-Verlag, Berlin 1993. Zbl 0782.53013, MR 1202431
Reference: [6] Kurek J.: Natural affinors on higher order cotangent bundles.Arch. Math. (Brno) 28 (1992), 175-180. MR 1222284
Reference: [7] Mikulski W. M.: The natural affinors on dual r-jet prolongation of bundles of 2-forms.Ann. UMCS Lublin 2002, (to appear). MR 1984608
Reference: [8] Mikulski W. M.: Natural affinors on $r$-jet prolongation of the tangant bundle.Arch. Math. (Brno) 34 (2) (1998). 321-328. MR 1645340
Reference: [9] Mikulski W. M.: The natural affinors on $ \otimes ^k T^{(k)}$.Note di Matematica vol. 19-n. 2. (1999), 269-274. MR 1816880
Reference: [10] Mikulski W. M.: The natural affinors on generalized higher order tangent bundles.Rend. Mat. Roma vol. 21. (2001). (to appear). Zbl 1048.58004, MR 1884952
Reference: [11] Mikulski W. M.: Natural affinors on $(J^{r,s,q}(\cdot ,{\bold R}^{1,1})_0)^\ast $.Coment. Math. Carolinae 42 (2001), (to appear). Zbl 1050.58004, MR 1883375
Reference: [12] Zajtz A.: On the order of natural operators and liftings.Ann. Polon. Math. 49 (1988), 169-178. MR 0983220
.

Files

Files Size Format View
ArchMathRetro_039-2003-3_10.pdf 243.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo