Previous |  Up |  Next

Article

Title: The complex geometry of an integrable system (English)
Author: Lesfari, Ahmed
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 4
Year: 2003
Pages: 257-270
Summary lang: English
.
Category: math
.
Summary: In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it. (English)
Keyword: integrable systems
Keyword: curves
Keyword: abelian varieties
MSC: 14H70
MSC: 37J35
MSC: 70G55
MSC: 70H06
idZBL: Zbl 1110.70022
idMR: MR2028736
.
Date available: 2008-06-06T22:42:04Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107873
.
Reference: [1] Adler M., van Moerbeke P.: The algebraic complete integrability of geodesic flow on $SO(4)$.Invent. Math. 67 (1982), 297–331. MR 0665159
Reference: [2] Arbarello E., Cornalba M., Griffiths P. A., Harris J.: Geometry of algebraic curves I.Springer-Verlag, 1994.
Reference: [3] Arnold V. I.: Mathematical methods in classical mechanics.Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0690288
Reference: [4] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B.: Algebro-Geometric approach to nonlinear integrable equations.Springer-Verlag, 1994.
Reference: [5] Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A.: Quasi-periodic solutions of the coupled nonlinear Schrödinger equations.Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. MR 1369055
Reference: [6] Griffiths P. A., Harris J.: Principles of algebraic geometry.Wiley-Interscience, 1978. Zbl 0408.14001, MR 0507725
Reference: [7] Haine L.: Geodesic flow on $SO(4)$ and Abelian surfaces.Math. Ann. 263 (1983), 435–472. Zbl 0521.58042, MR 0707241
Reference: [8] Lesfari A.: Une approche systématique à la résolution du corps solide de Kowalewski.C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. MR 0837502
Reference: [9] Lesfari A.: Abelian surfaces and Kowalewski’s top.Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. Zbl 0667.58019, MR 0956766
Reference: [10] Lesfari A.: On affine surface that can be completed by a smooth curve.Results Math. 35 (1999), 107–118. Zbl 0947.14022, MR 1678068
Reference: [11] Lesfari A.: Une méthode de compactification de variétés liées aux systèmes dynamiques.Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157.
Reference: [12] Lesfari A.: Geodesic flow on $SO(4)$, Kac-Moody Lie algebra and singularities in the complex t-plane.Publ. Mat. 43 (1999), 261–279. MR 1697525
Reference: [13] Lesfari A.: Completely integrable systems: Jacobi’s heritage.J. Geom. Phys. 31 (1999), 265–286. Zbl 0937.37046, MR 1711527
Reference: [14] Lesfari A.: The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case.Nonlinear Differential Equations Appl. 8 (2001), 1–13. Zbl 0982.35085, MR 1828945
Reference: [15] Lesfari A.: The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability.Rep. Math. Phys. 47 (2001), 9–20. Zbl 1054.37038, MR 1823005
Reference: [16] Lesfari A.: A new class of integrable systems.Arch. Math. 77 (2001), 347–353. Zbl 0996.70014, MR 1853551
Reference: [17] Lesfari A.: The Hénon-Heiles system via the Kowalewski-Painlevé analysis.Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N${{}^{\circ }}$4 (2003), 305–330. MR 2128205
Reference: [18] Lesfari A.: Le théorème d’Arnold-Liouville et ses conséquences.Elem. Math. 58, Issue 1 (2003), 6–20. Zbl 1112.37043, MR 1961831
Reference: [19] Lesfari A.: Le système différentiel de Hénon-Heiles et les variétés Prym.Pacific J. Math. 212, No. 1 (2003), 125–132. MR 2016973
Reference: [20] Mumford D.: Tata lectures on theta II.Progr. Math., Birkhaüser, Boston, 1982.
Reference: [21] Mumford D.: On the equations defining Abelian varieties.Invent. Math. 1 (1966), 287–354. Zbl 0219.14024, MR 0204427
Reference: [22] Perelomov A. M.: Integrable systems of classical mechanics and Lie algebras.Birkhäuser, 1990. Zbl 0717.70003, MR 1048350
.

Files

Files Size Format View
ArchMathRetro_039-2003-4_1.pdf 254.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo