Title:
|
The complex geometry of an integrable system (English) |
Author:
|
Lesfari, Ahmed |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
39 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
257-270 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization $\left( 2,8\right) $ and that the flow of the system can be linearized on it. (English) |
Keyword:
|
integrable systems |
Keyword:
|
curves |
Keyword:
|
abelian varieties |
MSC:
|
14H70 |
MSC:
|
37J35 |
MSC:
|
70G55 |
MSC:
|
70H06 |
idZBL:
|
Zbl 1110.70022 |
idMR:
|
MR2028736 |
. |
Date available:
|
2008-06-06T22:42:04Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107873 |
. |
Reference:
|
[1] Adler M., van Moerbeke P.: The algebraic complete integrability of geodesic flow on $SO(4)$.Invent. Math. 67 (1982), 297–331. MR 0665159 |
Reference:
|
[2] Arbarello E., Cornalba M., Griffiths P. A., Harris J.: Geometry of algebraic curves I.Springer-Verlag, 1994. |
Reference:
|
[3] Arnold V. I.: Mathematical methods in classical mechanics.Springer-Verlag, Berlin-Heidelberg-New York, 1978. MR 0690288 |
Reference:
|
[4] Belokolos E. D., Bobenko A. I., Enolskii V. Z., Its A. R., Matveev V. B.: Algebro-Geometric approach to nonlinear integrable equations.Springer-Verlag, 1994. |
Reference:
|
[5] Christiansen P. L., Eilbeck J. C., Enolskii V. Z., Kostov N. A.: Quasi-periodic solutions of the coupled nonlinear Schrödinger equations.Proc. Roy. Soc. London Ser. A 451 (1995), 685–700. MR 1369055 |
Reference:
|
[6] Griffiths P. A., Harris J.: Principles of algebraic geometry.Wiley-Interscience, 1978. Zbl 0408.14001, MR 0507725 |
Reference:
|
[7] Haine L.: Geodesic flow on $SO(4)$ and Abelian surfaces.Math. Ann. 263 (1983), 435–472. Zbl 0521.58042, MR 0707241 |
Reference:
|
[8] Lesfari A.: Une approche systématique à la résolution du corps solide de Kowalewski.C. R. Acad. Sc. Paris, série I, t. 302 (1986), 347–350. MR 0837502 |
Reference:
|
[9] Lesfari A.: Abelian surfaces and Kowalewski’s top.Ann. Scient. École Norm. Sup. 4, 21 (1988), 193–223. Zbl 0667.58019, MR 0956766 |
Reference:
|
[10] Lesfari A.: On affine surface that can be completed by a smooth curve.Results Math. 35 (1999), 107–118. Zbl 0947.14022, MR 1678068 |
Reference:
|
[11] Lesfari A.: Une méthode de compactification de variétés liées aux systèmes dynamiques.Les cahiers de la recherche, Rectorat-Université Hassan II-Aïn Chock, Casablanca, Maroc, Vol. I, No. 1, (1999), 147–157. |
Reference:
|
[12] Lesfari A.: Geodesic flow on $SO(4)$, Kac-Moody Lie algebra and singularities in the complex t-plane.Publ. Mat. 43 (1999), 261–279. MR 1697525 |
Reference:
|
[13] Lesfari A.: Completely integrable systems: Jacobi’s heritage.J. Geom. Phys. 31 (1999), 265–286. Zbl 0937.37046, MR 1711527 |
Reference:
|
[14] Lesfari A.: The problem of the motion of a solid in an ideal fluid. Integration of the Clebsch’s case.Nonlinear Differential Equations Appl. 8 (2001), 1–13. Zbl 0982.35085, MR 1828945 |
Reference:
|
[15] Lesfari A.: The generalized Hénon-Heiles system, Abelian surfaces and algebraic complete integrability.Rep. Math. Phys. 47 (2001), 9–20. Zbl 1054.37038, MR 1823005 |
Reference:
|
[16] Lesfari A.: A new class of integrable systems.Arch. Math. 77 (2001), 347–353. Zbl 0996.70014, MR 1853551 |
Reference:
|
[17] Lesfari A.: The Hénon-Heiles system via the Kowalewski-Painlevé analysis.Int. J. Theor. Phys. Group Theory Nonlinear Opt. 9, N${{}^{\circ }}$4 (2003), 305–330. MR 2128205 |
Reference:
|
[18] Lesfari A.: Le théorème d’Arnold-Liouville et ses conséquences.Elem. Math. 58, Issue 1 (2003), 6–20. Zbl 1112.37043, MR 1961831 |
Reference:
|
[19] Lesfari A.: Le système différentiel de Hénon-Heiles et les variétés Prym.Pacific J. Math. 212, No. 1 (2003), 125–132. MR 2016973 |
Reference:
|
[20] Mumford D.: Tata lectures on theta II.Progr. Math., Birkhaüser, Boston, 1982. |
Reference:
|
[21] Mumford D.: On the equations defining Abelian varieties.Invent. Math. 1 (1966), 287–354. Zbl 0219.14024, MR 0204427 |
Reference:
|
[22] Perelomov A. M.: Integrable systems of classical mechanics and Lie algebras.Birkhäuser, 1990. Zbl 0717.70003, MR 1048350 |
. |