Title:
|
Characterizations of random approximations (English) |
Author:
|
Khan, Abdul Rahim |
Author:
|
Hussain, Nawab |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
39 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
271-275 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Some characterizations of random approximations are obtained in a locally convex space through duality theory. (English) |
Keyword:
|
locally convex space |
Keyword:
|
measurable map |
Keyword:
|
random approximation |
Keyword:
|
characterization |
MSC:
|
41A65 |
MSC:
|
47H10 |
MSC:
|
47H40 |
MSC:
|
60H25 |
idZBL:
|
Zbl 1112.60050 |
idMR:
|
MR2028737 |
. |
Date available:
|
2008-06-06T22:42:06Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107874 |
. |
Reference:
|
[1] Beg I.: A characterization of random approximations.Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. Zbl 0921.41014, MR 1684364 |
Reference:
|
[2] Beg I., Shahzad N.: Random approximations and random fixed point theorems.J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. Zbl 0811.47069, MR 1281509 |
Reference:
|
[3] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. Zbl 0339.60061, MR 0413273 |
Reference:
|
[4] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273. Zbl 0407.60069, MR 0528687 |
Reference:
|
[5] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set contractive random maps.Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. Zbl 0834.47049, MR 1227521 |
Reference:
|
[6] O’Regan D.: A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces.Comput. Math. Appl. 30(9) (1995), 39–49. Zbl 0846.45006, MR 1353517 |
Reference:
|
[7] Papageorgiou N. S.: Fixed points and best approximations for measurable multifunctions with stochastic domain.Tamkang J. Math. 23 (1992), no. 3, 197–203. Zbl 0773.60057, MR 1195311 |
Reference:
|
[8] Rao G. S., Elumalai S.: Approximation and strong approximation in locally convex spaces.Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. Zbl 0552.41025, MR 0748110 |
Reference:
|
[9] Rudin W.: Functional Analysis, McGraw-Hill Book Company.New York, 1973. MR 0365062 |
Reference:
|
[10] Sehgal V. M., Singh S. P.: On random approximations and a random fixed point theorem for set valued mappings.Proc. Amer. Math. Soc. 95 (1985), 91–94. Zbl 0607.47057, MR 0796453 |
Reference:
|
[11] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations in cones.J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. MR 1283065 |
Reference:
|
[12] Thaheem A. B.: Existence of best approximations.Port. Math. 42 (1983-84), no. 4, 435–440. MR 0836121 |
Reference:
|
[13] Tukey J. W.: Some notes on the separation axioms of convex sets.Port. Math. 3 (1942), 95–102. MR 0006606 |
. |