Previous |  Up |  Next

Article

Title: Characterizations of random approximations (English)
Author: Khan, Abdul Rahim
Author: Hussain, Nawab
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 4
Year: 2003
Pages: 271-275
Summary lang: English
.
Category: math
.
Summary: Some characterizations of random approximations are obtained in a locally convex space through duality theory. (English)
Keyword: locally convex space
Keyword: measurable map
Keyword: random approximation
Keyword: characterization
MSC: 41A65
MSC: 47H10
MSC: 47H40
MSC: 60H25
idZBL: Zbl 1112.60050
idMR: MR2028737
.
Date available: 2008-06-06T22:42:06Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107874
.
Reference: [1] Beg I.: A characterization of random approximations.Int. J. Math. Math. Sci. 22 (1999), no. 1, 209–211. Zbl 0921.41014, MR 1684364
Reference: [2] Beg I., Shahzad N.: Random approximations and random fixed point theorems.J. Appl. Math. Stochastic Anal. 7 (1994), no. 2, 145–150. Zbl 0811.47069, MR 1281509
Reference: [3] Bharucha-Reid A. T.: Fixed point theorems in probabilistic analysis.Bull. Amer. Math. Soc. 82 (1976), no. 5, 641–557. Zbl 0339.60061, MR 0413273
Reference: [4] Itoh S.: Random fixed point theorems with an application to random differential equations in Banach spaces.J. Math. Anal. Appl. 67 (1979), 261–273. Zbl 0407.60069, MR 0528687
Reference: [5] Lin T. C.: Random approximations and random fixed point theorems for continuous 1-set contractive random maps.Proc. Amer. Math. Soc. 123 (1995), no. 4, 1167–1176. Zbl 0834.47049, MR 1227521
Reference: [6] O’Regan D.: A fixed point theorem for condensing operators and applications to Hammerstein integral equations in Banach spaces.Comput. Math. Appl. 30(9) (1995), 39–49. Zbl 0846.45006, MR 1353517
Reference: [7] Papageorgiou N. S.: Fixed points and best approximations for measurable multifunctions with stochastic domain.Tamkang J. Math. 23 (1992), no. 3, 197–203. Zbl 0773.60057, MR 1195311
Reference: [8] Rao G. S., Elumalai S.: Approximation and strong approximation in locally convex spaces.Pure Appl. Math. Sci. XIX (1984), no. 1-2, 13–26. Zbl 0552.41025, MR 0748110
Reference: [9] Rudin W.: Functional Analysis, McGraw-Hill Book Company.New York, 1973. MR 0365062
Reference: [10] Sehgal V. M., Singh S. P.: On random approximations and a random fixed point theorem for set valued mappings.Proc. Amer. Math. Soc. 95 (1985), 91–94. Zbl 0607.47057, MR 0796453
Reference: [11] Tan K. K., Yuan X. Z.: Random fixed point theorems and approximations in cones.J. Math. Anal. Appl. 185 (1994), no. 2, 378–390. MR 1283065
Reference: [12] Thaheem A. B.: Existence of best approximations.Port. Math. 42 (1983-84), no. 4, 435–440. MR 0836121
Reference: [13] Tukey J. W.: Some notes on the separation axioms of convex sets.Port. Math. 3 (1942), 95–102. MR 0006606
.

Files

Files Size Format View
ArchMathRetro_039-2003-4_2.pdf 176.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo