Previous |  Up |  Next

Article

Title: Banach function spaces and exponential instability of evolution families (English)
Author: Megan, Mihail
Author: Sasu, Luminita
Author: Sasu, Bogdan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 4
Year: 2003
Pages: 277-286
Summary lang: English
.
Category: math
.
Summary: In this paper we give necessary and sufficient conditions for uniform exponential instability of evolution families in Banach spaces, in terms of Banach function spaces. Versions of some well-known theorems due to Datko, Neerven, Rolewicz and Zabczyk, are obtained for the case of uniform exponential instability of evolution families. (English)
Keyword: evolution family
Keyword: uniform exponential instability
Keyword: Banach function spaces
MSC: 34D05
MSC: 34D20
MSC: 34G10
MSC: 34G20
MSC: 47D06
idZBL: Zbl 1116.34328
idMR: MR2028738
.
Date available: 2008-06-06T22:42:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107875
.
Reference: [1] Chow S. N., Leiva H.: Existence and roughness of the exponential dichotomy for linear skew-product semiflows in Banach space.J. Differential Equations 120 (1995), 429–477. MR 1347351
Reference: [2] Chicone C., Latushkin Y.: Evolution Semigroups in Dynamical Systems and Differential Equations.Math. Surveys Monogr. 70, Amer. Math. Soc., 1999. Zbl 0970.47027, MR 1707332
Reference: [3] Daleckii J. L., Krein M. G.: Stability of Solutions of Differential Equations in Banach Spaces.Transl. Math. Monogr. 43, Amer. Math. Soc., Providence, R.I., 1974. MR 0352639
Reference: [4] Datko R.: Uniform asymptotic stability of evolutionary processes in a Banach space.SIAM J. Math. Anal. 3 (1972), 428–445. Zbl 0241.34071, MR 0320465
Reference: [5] Meyer-Nieberg P.: Banach Lattices.Springer Verlag, Berlin, Heidelberg, New York, 1991. Zbl 0743.46015, MR 1128093
Reference: [6] Megan M., Sasu B., Sasu A. L.: On uniform exponential stability of evolution families.Riv. Mat. Univ. Parma 4 (2001), 27–43. Zbl 1003.34045, MR 1878009
Reference: [7] Megan M., Sasu A. L., Sasu B.: Nonuniform exponential instability of evolution operators in Banach spaces.Glas. Mat. Ser. III 56 (2001), 287–295. MR 1884449
Reference: [8] Megan M., Sasu B., Sasu A. L.: On nonuniform exponential dichotomy of evolution operators in Banach spaces.Integral Equations Operator Theory 44 (2002), 71–78. Zbl 1034.34056, MR 1913424
Reference: [9] Megan M., Sasu A. L., Sasu B.: On uniform exponential stability of linear skew- -product semiflows in Banach spaces.Bull. Belg. Math. Soc. Simon Stevin 9 (2002), 143–154. Zbl 1032.34046, MR 1905653
Reference: [10] Megan M., Sasu A. L., Sasu B.: Discrete admissibility and exponential dichotomy for evolution families.Discrete Contin. Dynam. Systems 9 (2003), 383–397. Zbl 1032.34048, MR 1952381
Reference: [11] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential dichotomy of linear skew-product semiflows.Bull. Belg. Mat. Soc. Simon Stevin 10 (2003), 1–21. Zbl 1045.34022, MR 2032321
Reference: [12] Megan M., Sasu A. L., Sasu B.: Perron conditions for uniform exponential expansiveness of linear skew-product flows.Monatsh. Math. 138 (2003), 145–157. Zbl 1023.34043, MR 1964462
Reference: [13] Megan M., Sasu B., Sasu A. L.: Exponential expansiveness and complete admissibility for evolution families.Czech. Math. J. 53 (2003). Zbl 1080.34546, MR 2086730
Reference: [14] Megan M., Sasu A. L., Sasu B.: Perron conditions for pointwise and global exponential dichotomy of linear skew-product flows.accepted for publication in Integral Equations Operator Theory. Zbl 1064.34035, MR 2105960
Reference: [15] Megan M., Sasu A. L., Sasu B.: Theorems of Perron type for uniform exponential stability of linear skew-product semiflows.accepted for publication in Dynam. Contin. Discrete Impuls. Systems. Zbl 1079.34047
Reference: [16] van Minh N., Räbiger F., Schnaubelt R.: Exponential stability, exponential expansiveness and exponential dichotomy of evolution equations on the half line.Integral Equations Operator Theory 32 (1998), 332–353. Zbl 0977.34056, MR 1652689
Reference: [17] van Neerven J. M. A. M.: Exponential stability of operators and operator semigroups.J. Funct. Anal. 130 (1995), 293–309. Zbl 0832.47034, MR 1335382
Reference: [18] van Neerven J. M. A. M.: The Asymptotic Behaviour of Semigroups of Linear Operators.Operator Theory Adv. Appl. 88, Birkhäuser, Bassel, 1996. Zbl 0905.47001, MR 1409370
Reference: [19] Rolewicz S.: On uniform N - equistability.J. Math. Anal. Appl. 115 (1986), 434–441. Zbl 0597.34064, MR 0836237
Reference: [20] Zabczyk J.: Remarks on the control of discrete-time distributed parameter systems.SIAM J. Control Optim. 12 (1994), 721–735. MR 0410506
.

Files

Files Size Format View
ArchMathRetro_039-2003-4_3.pdf 225.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo