Previous |  Up |  Next

Article

Title: The moving frames for differential equations. I. The change of independent variable (English)
Author: Tryhuk, Václav
Author: Dlouhý, Oldřich
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 39
Issue: 4
Year: 2003
Pages: 317-333
Summary lang: English
.
Category: math
.
Summary: The article concerns the symmetries of differential equations with short digressions to the underdetermined case and the relevant differential equations with delay. It may be regarded as an introduction into the method of moving frames relieved of the geometrical aspects: the stress is made on the technique of calculations employing only the most fundamental properties of differential forms. The present Part I is devoted to a single ordinary differential equation subjected to the change of the independent variable, the unknown function is preserved. (English)
Keyword: moving coframe
Keyword: equivalence of differential equations
Keyword: symmetry of differential equations
Keyword: differential invariant
Keyword: Maurer-Cartan form
MSC: 34A25
MSC: 34A26
MSC: 34C14
MSC: 53B21
idZBL: Zbl 1116.34301
idMR: MR2032105
.
Date available: 2008-06-06T22:42:31Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107880
.
Related article: http://dml.cz/handle/10338.dmlcz/107892
.
Reference: [1] Aczél J.: Über Zusammenhänge zwischen Differential– und Funktionalgleichungen.Jahresber. Deutsch. Math. Ver. 71 (1969), 55–57. Zbl 0175.45603, MR 0256014
Reference: [2] Awane A., Goze M.: Pfaffian Systems, k-symplectic Systems.Kluwer Academic Publischers (Dordrecht–Boston–London), 2000. Zbl 0957.58004, MR 1779116
Reference: [3] Borůvka O.: Linear Differential Transformations of the Second Order.The English Univ. Press, London, 1971. MR 0463539
Reference: [4] Bryant R., Chern S. S., Goldschmidt H., Griffiths P. A.: Exterior differential systems.Mat. Sci. Res. Inst. Publ. 18, Springer-Verlag 1991. Zbl 0726.58002, MR 1083148
Reference: [5] Cartan E.: Les systémes différentiels extérieurs et leurs applications géometriques.Act. Scient. et Ind. 994 (1945). Zbl 0063.00734, MR 0016174
Reference: [6] Cartan E.: Sur la structure des groupes infinis de transformations.Ann. Ec. Norm. 3-e serie, t. XXI, 1904 (also Oeuvres Complètes, Partie II, Vol 2, Gauthier–Villars, Paris 1953).
Reference: [7] Chrastina J.: Transformations of differential equations.Equadiff 9 CD ROM, Papers, Masaryk univerzity, Brno 1997, 83–92.
Reference: [8] Chrastina J.: The formal theory of differential equations.Folia Fac. Scient. Nat. Univ. Masarykianae Brunensis, Mathematica 6, 1998. Zbl 0906.35002, MR 1656843
Reference: [9] Gardner R. B.: The method of equivalence and its applications.CBMS–NSF Regional Conf. in Appl. Math. 58, 1989. Zbl 0694.53027, MR 1062197
Reference: [10] Moór A., Pintér L.: Untersuchungen über den Zusammenhang von Differential– und Funktionalgleichungen.Publ. Math. Debrecen 13 (1966), 207–223. Zbl 0199.15301, MR 0206445
Reference: [11] Neuman F.: Global Properties of Linear Ordinary Differential Equations.Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht–Boston–London, 1991. Zbl 0784.34009, MR 1192133
Reference: [12] Posluszny J., Rubel L. A.: The motion of an ordinary differential equation.J. Differential Equations 34 (1979), 291–302. MR 0550047
Reference: [13] Sharpe R. V.: Differential geometry.Graduate Texts in Math. 166, Springer Verlag, 1997. Zbl 0876.53001, MR 1453120
Reference: [14] Tryhuk V.: On transformations $z(t)=y(\varphi (t))$ of ordinary differential equations.Czech. Math. J., 50(125) (2000), Praha, 509–518. Zbl 1079.34505, MR 1777472
.

Files

Files Size Format View
ArchMathRetro_039-2003-4_8.pdf 270.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo