Title:
|
A singular version of Leighton's comparison theorem for forced quasilinear second order differential equations (English) |
Author:
|
Došlý, Ondřej |
Author:
|
Jaroš, Jaroslav |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
39 |
Issue:
|
4 |
Year:
|
2003 |
Pages:
|
335-345 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We extend the classical Leighton comparison theorem to a class of quasilinear forced second order differential equations \[ (r(t)|x^{\prime }|^{\alpha -2}x^{\prime })^{\prime }+c(t)|x|^{\beta -2}x=f(t)\,,\quad 1<\alpha \le \beta ,\ t\in I=(a,b)\,, \qquad \mathrm {(*)}\] where the endpoints $a$, $b$ of the interval $I$ are allowed to be singular. Some applications of this statement in the oscillation theory of (*) are suggested. (English) |
Keyword:
|
Picone’s identity |
Keyword:
|
forced quasilinear equation |
Keyword:
|
principal solution |
MSC:
|
34C10 |
idZBL:
|
Zbl 1116.34316 |
idMR:
|
MR2032106 |
. |
Date available:
|
2008-06-06T22:42:34Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107881 |
. |
Reference:
|
[1] Došlý, O.: Methods of oscillation theory of half–linear second order differential equations.Czech. Math. J. 125 (2000), 657–671. MR 1777486 |
Reference:
|
[2] Došlý, O.: A remark on conjugacy of half-linear second order differential equations.Math. Slovaca, 50 (2000), 67–79. MR 1764346 |
Reference:
|
[3] Došlý, O.: Half-linear oscillation theory.Stud. Univ. Žilina, Ser. Math. Phys. 13 (2001), 65–73. Zbl 1040.34040, MR 1874005 |
Reference:
|
[4] Došlý, O., Elbert, Á.: Integral characterization of principal solution of half-linear second order differential equations.Studia Sci. Math. Hungar. 36 (2000), 455-469. MR 1798750 |
Reference:
|
[5] Došlý, O., Řezíčková, J.: Regular half-linear second order differential equations.Arch. Math. (Brno) 39 (2003), 233–245. MR 2010724 |
Reference:
|
[6] Elbert, Á.: A half-linear second order differential equation.Colloq. Math. Soc. János Bolyai 30 (1979), 153–180. MR 0680591 |
Reference:
|
[7] Elbert, Á. and Kusano, T.: Principal solutions of nonoscillatory half-linear differential equations.Advances in Math. Sci. Appl. 18 (1998), 745–759. |
Reference:
|
[8] Jaroš, J., Kusano, T.: A Picone type identity for half-linear differential equations.Acta Math. Univ. Comenianae 68 (1999), 127–151. MR 1711081 |
Reference:
|
[9] Jaroš, J., Kusano, T., Yoshida, N.: Forced superlinear oscillations via Picone’s identity.Acta Math. Univ. Comenianae LXIX (2000), 107–113. MR 1796791 |
Reference:
|
[10] Jaroš, J., Kusano, T., Yoshida, N.: Generalized Picone’s formula and forced oscillation in quasilinear differential equations of the second order.Arch. Math. (Brno) 38 (2002), 53–59. MR 1899568 |
Reference:
|
[11] Komkov, V.: A generalization of Leighton’s variational theorem.Appl. Anal. 2 (1973), 377–383. MR 0414994 |
Reference:
|
[12] Leighton, W.: Comparison theorems for linear differential equations of second order.Proc. Amer. Math. Soc. 13 (1962), 603–610. Zbl 0118.08202, MR 0140759 |
Reference:
|
[13] Mirzov, J. D.: On some analogs of Sturm’s and Kneser’s theorems for nonlinear systems.J. Math. Anal. Appl. 53 (1976), 418–425. Zbl 0327.34027, MR 0402184 |
Reference:
|
[14] Mirzov, J. D.: Principal and nonprincipal solutions of a nonoscillatory system.Tbiliss. Gos. Univ. Inst. Prikl. Mat. Trudy 31 (1988), 100–117. MR 1001343 |
Reference:
|
[15] Müller-Pfeiffer, E.: Comparison theorems for Sturm-Liouville equations.Arch. Math. 22 (1986), 65–73. MR 0868121 |
Reference:
|
[16] Müller-Pfeiffer, E.: Sturm comparison theorems for non-selfadjoint differential equations on non-compact intervals.Math. Nachr. 159 (1992), 291–298. MR 1237116 |
Reference:
|
[17] Swanson, C. A.: .Comparison and Oscillation Theory of Linear Differential Equation, Acad. Press, New York, 1968. Zbl 1168.92026, MR 0463570 |
. |