Previous |  Up |  Next

Article

Title: Ideal-theoretic characterizations of valuation and Prüfer monoids (English)
Author: Halter-Koch, Franz
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 1
Year: 2004
Pages: 41-46
Summary lang: English
.
Category: math
.
Summary: It is well known that an integral domain is a valuation domain if and only if it possesses only one finitary ideal system (Lorenzen $r$-system of finite character). We prove an analogous result for root-closed (cancellative) monoids and apply it to give several new characterizations of Prüfer (multiplication) monoids and integral domains. (English)
Keyword: valuation monoids
Keyword: Prüfer domains
MSC: 13A15
MSC: 13F05
MSC: 20M12
MSC: 20M14
MSC: 20M25
idZBL: Zbl 1114.20041
idMR: MR2054871
.
Date available: 2008-06-06T22:42:51Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107889
.
Reference: [1] Aubert K. E.: Some characterizations of valuation rings.Duke Math. J. 21 (1954), 517–525. MR 0062727
Reference: [2] Garcia J. M., Jaros P., Santos E.: Prüfer $*$-multiplication domains and torsion theories.Comm. Algebra 27 (1999), 1275–1295. MR 1669156
Reference: [3] Halter-Koch F.: Ideal Systems.Marcel Dekker 1998. Zbl 0953.13001, MR 1828371
Reference: [4] Halter-Koch F.,: Construction of ideal systems having nice noetherian properties.Commutative Rings in a Non-Noetherian Setting (S. T. Chapman and S. Glaz, eds.), Kluwer 2000, 271–285. MR 1858166
Reference: [5] Halter-Koch F.: Characterization of Prüfer multiplication monoids and domains by means of spectral module systems.Monatsh. Math. 139 (2003), 19–31. Zbl 1058.20049, MR 1981115
Reference: [6] Halter-Koch F.: Valuation Monoids, Defining Systems and Approximation Theorems.Semigroup Forum 55 (1997), 33–56. Zbl 0880.20047, MR 1446657
.

Files

Files Size Format View
ArchMathRetro_040-2004-1_5.pdf 192.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo