Title:
|
The Tanaka-Webster connection for almost $\mathcal{S}$-manifolds and Cartan geometry (English) |
Author:
|
Lotta, Antonio |
Author:
|
Pastore, Anna Maria |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
47-61 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We prove that a CR-integrable almost $\mathcal S$-manifold admits a canonical linear connection, which is a natural generalization of the Tanaka–Webster connection of a pseudo-hermitian structure on a strongly pseudoconvex CR manifold of hypersurface type. Hence a CR-integrable almost $\mathcal S$-structure on a manifold is canonically interpreted as a reductive Cartan geometry, which is torsion free if and only if the almost $\mathcal S$-structure is normal. Contrary to the CR-codimension one case, we exhibit examples of non normal almost $\mathcal S$-manifolds with higher CR-codimension, whose Tanaka–Webster curvature vanishes. (English) |
Keyword:
|
almost $\mathcal S$-structure |
Keyword:
|
Tanaka–Webster connection |
Keyword:
|
Cartan connection |
Keyword:
|
CR manifold |
MSC:
|
32V05 |
MSC:
|
53B05 |
MSC:
|
53C10 |
MSC:
|
53C15 |
MSC:
|
53C25 |
idZBL:
|
Zbl 1114.53022 |
idMR:
|
MR2054872 |
. |
Date available:
|
2008-06-06T22:42:54Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107890 |
. |
Reference:
|
[1] Alekseevsky D. V., Michor P. W.: Differential Geometry of Cartan connections.Publ. Math. Debrecen 47 (1995), 349–375. Zbl 0857.53011, MR 1362298 |
Reference:
|
[2] Blair D. E.: Contact manifolds in Riemannian Geometry.Lecture Notes in Math. 509, 1976, Springer–Verlag. Zbl 0319.53026, MR 0467588 |
Reference:
|
[3] Blair D. E.: Geometry of manifolds with structural group ${\mathcal{U}}(n)\times {\mathcal{O}}(s)$.J. Differential Geom. 4 (1970), 155–167. MR 0267501 |
Reference:
|
[4] Duggal K. L., Ianus S., Pastore A. M.: Maps interchanging $f$-structures and their harmonicity.Acta Appl. Math. 67 (2001), 91–115. Zbl 1030.53048, MR 1847885 |
Reference:
|
[5] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. I.Interscience, New-York, 1963. MR 0152974 |
Reference:
|
[6] Kobayashi S., Nomizu K.: Foundations of Differential Geometry, Vol. II.Interscience, New-York, 1969. Zbl 0175.48504, MR 0238225 |
Reference:
|
[7] Lotta A.: Cartan connections on $CR$ manifolds.PhD Thesis, University of Pisa, 2000. Zbl 1053.32507 |
Reference:
|
[8] Mizner R. I.: Almost CR structures, $f$-structures, almost product structures and associated connections.Rocky Mountain J. Math. 23, no. 4 (1993), 1337–1359. Zbl 0806.53030, MR 1256452 |
Reference:
|
[9] Sharpe R. W.: Differential geometry. Cartan’s generalization of Klein’s Erlangen program.Graduate Texts in Mathematics 166, Springer-Verlag, New York, 1997. Zbl 0876.53001, MR 1453120 |
Reference:
|
[10] Tanaka N.: On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections.Japan. J. Math. 20 (1976), 131–190. Zbl 0346.32010, MR 0589931 |
Reference:
|
[11] Tanno S.: Variational problems on contact Riemannian manifolds.Trans. Amer. Math. Soc., Vol. 314 (1989), 349–379. Zbl 0677.53043, MR 1000553 |
Reference:
|
[12] Tanno S.: The automorphism groups of almost contact Riemannian manifolds.Tohoku Math. J. 21 (1969), 21–38. Zbl 0188.26705, MR 0242094 |
Reference:
|
[13] Urakawa H.: Yang-Mills connections over compact strongly pseudoconvex CR manifolds.Math. Z. 216 (1994), 541–573. Zbl 0815.32008, MR 1288045 |
Reference:
|
[14] Webster S. M.: Pseudo-hermitian structures on a real hypersurface.J. Differential Geom. 13 (1978), 25–41. Zbl 0379.53016, MR 0520599 |
Reference:
|
[15] Yano K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3+f=0$.Tensor (N.S.) 14 (1963), 99–109. MR 0159296 |
. |