Title:
|
A nonlinear differential equation involving reflection of the argument (English) |
Author:
|
Ma, T. F. |
Author:
|
Miranda, E. S. |
Author:
|
de Souza Cortes, M. B. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
1 |
Year:
|
2004 |
Pages:
|
63-68 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study the nonlinear boundary value problem involving reflection of the argument \[ -M\Big (\int _{-1}^1\vert u^{\prime }(s)\vert ^2\,ds\Big )\,u^{\prime \prime }(x) = f\big (x,u(x),u(-x)\big ) \quad \quad x \in [-1,1]\,, \] where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin approximations combined with the Brouwer’s fixed point theorem we obtain existence and uniqueness results. A numerical algorithm is also presented. (English) |
Keyword:
|
reflection |
Keyword:
|
Brouwer fixed point |
Keyword:
|
Kirchhoff equation |
MSC:
|
34B15 |
idZBL:
|
Zbl 1116.34309 |
idMR:
|
MR2054873 |
. |
Date available:
|
2008-06-06T22:42:56Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107891 |
. |
Reference:
|
[1] Arosio A., Panizzi S.: On the well-posedness of the Kirchhoff string.Trans. Amer. Math. Soc. 348 (1996), 305–330. Zbl 0858.35083, MR 1333386 |
Reference:
|
[2] Chipot M., Rodrigues J. F.: On a class of nonlinear nonlocal elliptic problems.RAIRO Modél. Math. Anal. Numér. 26 (1992), 447–467. MR 1160135 |
Reference:
|
[3] Gupta C. P.: Existence and uniqueness theorems for boundary value problems involving reflection of the argument.Nonlinear Anal. 11 (1987), 1075–1083. Zbl 0632.34069, MR 0907824 |
Reference:
|
[4] Hai D. D.: Two point boundary value problem for differential equations with reflection of argument.J. Math. Anal. Appl. 144 (1989), 313–321. Zbl 0699.34017, MR 1027038 |
Reference:
|
[5] Kesavan S.: Topics in Functional Analysis and Applications.Wiley Eastern, New Delhi, 1989. Zbl 0666.46001, MR 0990018 |
Reference:
|
[6] Ma T. F.: Existence results for a model of nonlinear beam on elastic bearings.Appl. Math. Lett. 13 (2000), 11–15. Zbl 0965.74030, MR 1760256 |
Reference:
|
[7] O’Regan D.: Existence results for differential equations with reflection of the argument.J. Austral. Math. Soc. Ser. A 57 (1994), 237–260. Zbl 0818.34037, MR 1288675 |
Reference:
|
[8] Sharma R. K.: Iterative solutions to boundary-value differential equations involving reflection of the argument.J. Comput. Appl. Math. 24 (1988), 319–326. Zbl 0664.65080, MR 0974020 |
Reference:
|
[9] Wiener J., Aftabizadeh A. R.: Boundary value problems for differential equations with reflection of the argument.Int. J. Math. Math. Sci. 8 (1985), 151–163. Zbl 0583.34055, MR 0786960 |
. |