Previous |  Up |  Next

Article

Title: A nonlinear differential equation involving reflection of the argument (English)
Author: Ma, T. F.
Author: Miranda, E. S.
Author: de Souza Cortes, M. B.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 1
Year: 2004
Pages: 63-68
Summary lang: English
.
Category: math
.
Summary: We study the nonlinear boundary value problem involving reflection of the argument \[ -M\Big (\int _{-1}^1\vert u^{\prime }(s)\vert ^2\,ds\Big )\,u^{\prime \prime }(x) = f\big (x,u(x),u(-x)\big ) \quad \quad x \in [-1,1]\,, \] where $M$ and $f$ are continuous functions with $M>0$. Using Galerkin approximations combined with the Brouwer’s fixed point theorem we obtain existence and uniqueness results. A numerical algorithm is also presented. (English)
Keyword: reflection
Keyword: Brouwer fixed point
Keyword: Kirchhoff equation
MSC: 34B15
idZBL: Zbl 1116.34309
idMR: MR2054873
.
Date available: 2008-06-06T22:42:56Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107891
.
Reference: [1] Arosio A., Panizzi S.: On the well-posedness of the Kirchhoff string.Trans. Amer. Math. Soc. 348 (1996), 305–330. Zbl 0858.35083, MR 1333386
Reference: [2] Chipot M., Rodrigues J. F.: On a class of nonlinear nonlocal elliptic problems.RAIRO Modél. Math. Anal. Numér. 26 (1992), 447–467. MR 1160135
Reference: [3] Gupta C. P.: Existence and uniqueness theorems for boundary value problems involving reflection of the argument.Nonlinear Anal. 11 (1987), 1075–1083. Zbl 0632.34069, MR 0907824
Reference: [4] Hai D. D.: Two point boundary value problem for differential equations with reflection of argument.J. Math. Anal. Appl. 144 (1989), 313–321. Zbl 0699.34017, MR 1027038
Reference: [5] Kesavan S.: Topics in Functional Analysis and Applications.Wiley Eastern, New Delhi, 1989. Zbl 0666.46001, MR 0990018
Reference: [6] Ma T. F.: Existence results for a model of nonlinear beam on elastic bearings.Appl. Math. Lett. 13 (2000), 11–15. Zbl 0965.74030, MR 1760256
Reference: [7] O’Regan D.: Existence results for differential equations with reflection of the argument.J. Austral. Math. Soc. Ser. A 57 (1994), 237–260. Zbl 0818.34037, MR 1288675
Reference: [8] Sharma R. K.: Iterative solutions to boundary-value differential equations involving reflection of the argument.J. Comput. Appl. Math. 24 (1988), 319–326. Zbl 0664.65080, MR 0974020
Reference: [9] Wiener J., Aftabizadeh A. R.: Boundary value problems for differential equations with reflection of the argument.Int. J. Math. Math. Sci. 8 (1985), 151–163. Zbl 0583.34055, MR 0786960
.

Files

Files Size Format View
ArchMathRetro_040-2004-1_7.pdf 198.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo