Previous |  Up |  Next

Article

Title: Two linear time algorithms for MST on minor closed graph classes (English)
Author: Mareš, Martin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 3
Year: 2004
Pages: 315-320
Summary lang: English
.
Category: math
.
Summary: This article presents two simple deterministic algorithms for finding the Minimum Spanning Tree in $O(\vert V\vert +\vert E\vert )$ time for any non-trivial class of graphs closed on graph minors. This applies in particular to planar graphs and graphs of bounded genus. Both algorithms run on a pointer machine and they require no a priori knowledge of the structure of the class except for its density. Edge weights are only compared. (English)
Keyword: minor closed graph classes
Keyword: minimum spanning trees
MSC: 05C05
MSC: 05C85
MSC: 68R10
idZBL: Zbl 1116.05079
idMR: MR2107027
.
Date available: 2008-06-06T22:44:07Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107914
.
Reference: [1] Borůvka O.: O jistém problému minimálním (About a Certain Minimal Problem).Práce mor. přírodověd. spol. v Brně, III, (1926), 37–58. Czech with German summary.
Reference: [2] Frederickson G. N.: Data structures for on-line updating of minimum spanning trees.SIAM J. Comput. 14 (1985), 781–798. Zbl 0575.68068, MR 0807881
Reference: [3] Fredman M., Willard D. E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths.In Proceedings of FOCS’90 (1990), 719–725.
Reference: [4] Graham R. L., Hell P.: On the history of the minimum spanning tree problem.Ann. Hist. Comput. 7 (1985), 43–57. Zbl 0998.68003, MR 0783327
Reference: [5] Chazelle B.: A Minimum Spanning Tree Algorithm with Inverse-Ackermann Type Complexity.J. ACM 47 (2000), 1028–1047. Zbl 1094.68606, MR 1866456
Reference: [6] Karger D. R., Klein P. N., Tarjan R. E.: Linear expected-time algorithms for connectivity problems.J. ACM 42 (1995), 321–328. MR 1409738
Reference: [7] Matsui T.: The Minimum Spanning tree Problem on a Planar Graph.Discrete Appl. Math. 58 (1995), 91–94. Zbl 0823.05024, MR 1323024
Reference: [8] Nešetřil J.: Some remarks on the history of MST-problem.Arch. Math. (Brno) 33 (1997), 15–22. MR 1464297
Reference: [9] Nešetřil J., de Mendez P. O.: Colorings and Homomorphism of Minor Closed Classes.To appear in Pollack-Goodman Festschrift, Springer Verlag, 2002. Zbl 1071.05526, MR 2038495
Reference: [10] Nešetřil J., Milková E., Nešetřilová H.: Otakar Borůvka on Minimum Spanning Tree Problem.Discrete Math. 233(1–3) (2001), 3–36. Zbl 0999.01019
Reference: [11] Pettie S.: Finding minimum spanning trees in $O(m\alpha (m,n))$ time.Tech Report TR99-23, Univ. of Texas at Austin, 1999.
Reference: [12] Pettie S., Ramachandran V.: An Optimal Minimum Spanning Tree Algorithm.In Proceedings of ICALP’2000, 49–60, Springer Verlag, 2000. Zbl 0973.68534, MR 1795885
Reference: [13] Tarjan R. E.: Data structures and network algorithms.44 CMBS-NSF Regional Conf. Series in Appl. Math. SIAM, 1983. Zbl 0584.68077, MR 0826534
.

Files

Files Size Format View
ArchMathRetro_040-2004-3_12.pdf 189.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo