Previous |  Up |  Next

Article

Title: Fixed point theorems for nonexpansive mappings in modular spaces (English)
Author: Kumam, Poom
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 40
Issue: 4
Year: 2004
Pages: 345-353
Summary lang: English
.
Category: math
.
Summary: In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if $\rho $ is a convex, $\rho $-complete modular space satisfying the Fatou property and $\rho _r$-uniformly convex for all $r>0$, C a convex, $\rho $-closed, $\rho $-bounded subset of $X_\rho $, $T:C\rightarrow C$ a $\rho $-nonexpansive mapping, then $T$ has a fixed point. (English)
Keyword: fixed point
Keyword: modular spaces
Keyword: $\rho $-nonexpansive mapping
Keyword: $\rho $-normal structure
Keyword: $\rho $-uniform normal structure
Keyword: $\rho _r$-uniformly convex
MSC: 46A80
MSC: 46B20
MSC: 46E30
MSC: 47H09
MSC: 47H10
idZBL: Zbl 1117.47045
idMR: MR2129956
.
Date available: 2008-06-06T22:44:17Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107918
.
Reference: [1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory.Spinger-Verlag, Heidelberg, New York 1990. Zbl 0713.47050, MR 1066202
Reference: [2] Ayerbe Toledano J. M., Dominguez Benavides T., and López Acedo G.: Measures of noncompactness in metric fixed point theory: Advances and Applications Topics in metric fixed point theory.Birkhäuser-Verlag, Basel, 99 (1997). MR 1483889
Reference: [3] Chen S., Khamsi M. A., Kozlowski W. M.: Some geometrical properties and fixed point theorems in Orlicz modular spaces.J. Math. Anal. Appl. 155 No. 2 (1991), 393–412. MR 1097290
Reference: [4] Dominguez Benavides T., Khamsi M. A., Samadi S.: Uniformly Lipschitzian mappings in modular function spaces.Nonlinear Analysis 40 No. 2 (2001), 267–278. MR 1849794
Reference: [5] Goebel K., Kirk W. A.: Topic in metric fixed point theorem.Cambridge University Press, Cambridge 1990. MR 1074005
Reference: [6] Goebel K., Reich S.: Uniform convexity, Hyperbolic geometry, and nonexpansive mappings.Monographs textbooks in pure and applied mathematics, New York and Basel, 83 1984. Zbl 0537.46001, MR 0744194
Reference: [7] Khamsi M. A.: Fixed point theory in modular function spacesm.Recent Advances on Metric Fixed Point Theorem, Universidad de Sivilla, Sivilla No. 8 (1996), 31–58. MR 1440218
Reference: [8] Khamsi M. A.: Uniform noncompact convexity, fixed point property in modular spaces.Math. Japonica 41 (1) (1994), 1–6. Zbl 0820.47063, MR 1305537
Reference: [9] Khamsi M. A.: A convexity property in modular function spaces.Math. Japonica 44, No. 2 (1990). MR 1416264
Reference: [10] Khamsi M. A., Kozlowski W. M., Reich S.: Fixed point property in modular function spaces.Nonlinear Analysis, 14, No. 11 (1990), 935–953. MR 1058415
Reference: [11] Kumam P.: Fixed Point Property in Modular Spaces.Master Thesis, Chiang Mai University (2002), Thailand.
Reference: [12] Megginson R. E.: An introduction to Banach space theory.Graduate Text in Math. Springer-Verlag, New York 183 (1998). Zbl 0910.46008, MR 1650235
Reference: [13] Musielak J.: Orlicz spaces and Modular spaces.Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York 1034 (1983). Zbl 0557.46020, MR 0724434
Reference: [14] Musielak J., Orlicz W.: On Modular spaces.Studia Math. 18 (1959), 591–597. Zbl 0099.09202, MR 0101487
Reference: [15] Nakano H.: Modular semi-ordered spaces.Tokyo, (1950).
.

Files

Files Size Format View
ArchMathRetro_040-2004-4_3.pdf 217.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo