Title:
|
Fixed point theorems for nonexpansive mappings in modular spaces (English) |
Author:
|
Kumam, Poom |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
40 |
Issue:
|
4 |
Year:
|
2004 |
Pages:
|
345-353 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if $\rho $ is a convex, $\rho $-complete modular space satisfying the Fatou property and $\rho _r$-uniformly convex for all $r>0$, C a convex, $\rho $-closed, $\rho $-bounded subset of $X_\rho $, $T:C\rightarrow C$ a $\rho $-nonexpansive mapping, then $T$ has a fixed point. (English) |
Keyword:
|
fixed point |
Keyword:
|
modular spaces |
Keyword:
|
$\rho $-nonexpansive mapping |
Keyword:
|
$\rho $-normal structure |
Keyword:
|
$\rho $-uniform normal structure |
Keyword:
|
$\rho _r$-uniformly convex |
MSC:
|
46A80 |
MSC:
|
46B20 |
MSC:
|
46E30 |
MSC:
|
47H09 |
MSC:
|
47H10 |
idZBL:
|
Zbl 1117.47045 |
idMR:
|
MR2129956 |
. |
Date available:
|
2008-06-06T22:44:17Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107918 |
. |
Reference:
|
[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory.Spinger-Verlag, Heidelberg, New York 1990. Zbl 0713.47050, MR 1066202 |
Reference:
|
[2] Ayerbe Toledano J. M., Dominguez Benavides T., and López Acedo G.: Measures of noncompactness in metric fixed point theory: Advances and Applications Topics in metric fixed point theory.Birkhäuser-Verlag, Basel, 99 (1997). MR 1483889 |
Reference:
|
[3] Chen S., Khamsi M. A., Kozlowski W. M.: Some geometrical properties and fixed point theorems in Orlicz modular spaces.J. Math. Anal. Appl. 155 No. 2 (1991), 393–412. MR 1097290 |
Reference:
|
[4] Dominguez Benavides T., Khamsi M. A., Samadi S.: Uniformly Lipschitzian mappings in modular function spaces.Nonlinear Analysis 40 No. 2 (2001), 267–278. MR 1849794 |
Reference:
|
[5] Goebel K., Kirk W. A.: Topic in metric fixed point theorem.Cambridge University Press, Cambridge 1990. MR 1074005 |
Reference:
|
[6] Goebel K., Reich S.: Uniform convexity, Hyperbolic geometry, and nonexpansive mappings.Monographs textbooks in pure and applied mathematics, New York and Basel, 83 1984. Zbl 0537.46001, MR 0744194 |
Reference:
|
[7] Khamsi M. A.: Fixed point theory in modular function spacesm.Recent Advances on Metric Fixed Point Theorem, Universidad de Sivilla, Sivilla No. 8 (1996), 31–58. MR 1440218 |
Reference:
|
[8] Khamsi M. A.: Uniform noncompact convexity, fixed point property in modular spaces.Math. Japonica 41 (1) (1994), 1–6. Zbl 0820.47063, MR 1305537 |
Reference:
|
[9] Khamsi M. A.: A convexity property in modular function spaces.Math. Japonica 44, No. 2 (1990). MR 1416264 |
Reference:
|
[10] Khamsi M. A., Kozlowski W. M., Reich S.: Fixed point property in modular function spaces.Nonlinear Analysis, 14, No. 11 (1990), 935–953. MR 1058415 |
Reference:
|
[11] Kumam P.: Fixed Point Property in Modular Spaces.Master Thesis, Chiang Mai University (2002), Thailand. |
Reference:
|
[12] Megginson R. E.: An introduction to Banach space theory.Graduate Text in Math. Springer-Verlag, New York 183 (1998). Zbl 0910.46008, MR 1650235 |
Reference:
|
[13] Musielak J.: Orlicz spaces and Modular spaces.Lecture Notes in Math., Springer-Verlag, Berlin, Heidelberg, New York 1034 (1983). Zbl 0557.46020, MR 0724434 |
Reference:
|
[14] Musielak J., Orlicz W.: On Modular spaces.Studia Math. 18 (1959), 591–597. Zbl 0099.09202, MR 0101487 |
Reference:
|
[15] Nakano H.: Modular semi-ordered spaces.Tokyo, (1950). |
. |