| Title:
             | 
Exploring invariant linear codes through generators and centralizers (English) | 
| Author:
             | 
Dey, Partha Pratim | 
| Language:
             | 
English | 
| Journal:
             | 
Archivum Mathematicum | 
| ISSN:
             | 
0044-8753 (print) | 
| ISSN:
             | 
1212-5059 (online) | 
| Volume:
             | 
41 | 
| Issue:
             | 
1 | 
| Year:
             | 
2005 | 
| Pages:
             | 
17-26 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
We investigate a $H$-invariant linear code $C$ over the finite field $F_{p}$ where $H$ is a group of linear transformations. We show that if $H$ is a noncyclic abelian group and $(\vert {H}\vert ,p)=1$, then the code $C$ is the sum of the centralizer codes $C_{c}(h)$ where $h$ is a nonidentity element of $H$. Moreover if $A$ is subgroup of $H$ such that $A\cong Z_{q} \times Z_{q}$, $q\ne p$, then dim $C$ is known when the dimension of $C_{c}(K)$ is known for each subgroup $K\ne 1$ of $A$. In the last few sections we restrict our scope of investigation to a special class of invariant codes, namely affine codes and their centralizers. New results concerning the dimensions of these codes and their centralizers are obtained. (English) | 
| Keyword:
             | 
invariant code | 
| Keyword:
             | 
centralizer | 
| Keyword:
             | 
affine plane | 
| MSC:
             | 
05E20 | 
| MSC:
             | 
94B05 | 
| idZBL:
             | 
Zbl 1115.05097 | 
| idMR:
             | 
MR2142140 | 
| . | 
| Date available:
             | 
2008-06-06T22:45:00Z | 
| Last updated:
             | 
2012-05-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/107932 | 
| . | 
| Reference:
             | 
[1] Hall M.: Combinatorial Theory.New York-Chichester-Brisbane-Toronto- Singapore: Interscience (1986).  Zbl 0588.05001, MR 0840216 | 
| Reference:
             | 
[2] Hughes D. R., Piper F. C.: Projective Planes.Berlin-Heidelberg- New York: Springer Verlag (1973).   Zbl 0267.50018, MR 0333959 | 
| . |