Title:
|
Conformally flat semi-symmetric spaces (English) |
Author:
|
Calvaruso, Giovanni |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
41 |
Issue:
|
1 |
Year:
|
2005 |
Pages:
|
27-36 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain the complete classification of conformally flat semi-symmetric spaces. (English) |
Keyword:
|
conformally flat manifolds |
Keyword:
|
semi-symmetric spaces |
MSC:
|
53C15 |
MSC:
|
53C25 |
MSC:
|
53C35 |
idZBL:
|
Zbl 1114.53027 |
idMR:
|
MR2142141 |
. |
Date available:
|
2008-06-06T22:45:03Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107933 |
. |
Reference:
|
[B] Boeckx E.: Einstein-like semi-symmetric spaces.Arch. Math. (Brno) 29 (1993), 235–240. Zbl 0807.53041, MR 1263125 |
Reference:
|
[BC] Boeckx E., Calvaruso G.: When is the unit tangent sphere bundle semi-symmetric?.preprint 2002. Zbl 1076.53032, MR 2075771 |
Reference:
|
[BKV] Boeckx E., Kowalski O., and Vanhecke L.: Riemannian manifolds of conullity two.World Scientific 1996. MR 1462887 |
Reference:
|
[CV] Calvaruso G., Vanhecke L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture.Bull. Austral. Math. Soc. 57 (1998), 109–115. Zbl 0903.53031, MR 1623824 |
Reference:
|
[HSk] Hashimoto N., Sekizawa M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172 |
Reference:
|
[K] Kurita M.: On the holonomy group of the conformally flat Riemannian manifold.Nagoya Math. J. 9 (1975), 161–171. MR 0074050 |
Reference:
|
[R] Ryan P.: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. MR 0487882 |
Reference:
|
[S] Szabó Y. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$.I, the local version, J. Differential Geom. 17 (1982), 531–582. MR 0683165 |
Reference:
|
[T] Takagi H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109 |
. |