Previous |  Up |  Next

Article

Title: Conformally flat semi-symmetric spaces (English)
Author: Calvaruso, Giovanni
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 27-36
Summary lang: English
.
Category: math
.
Summary: We obtain the complete classification of conformally flat semi-symmetric spaces. (English)
Keyword: conformally flat manifolds
Keyword: semi-symmetric spaces
MSC: 53C15
MSC: 53C25
MSC: 53C35
idZBL: Zbl 1114.53027
idMR: MR2142141
.
Date available: 2008-06-06T22:45:03Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107933
.
Reference: [B] Boeckx E.: Einstein-like semi-symmetric spaces.Arch. Math. (Brno) 29 (1993), 235–240. Zbl 0807.53041, MR 1263125
Reference: [BC] Boeckx E., Calvaruso G.: When is the unit tangent sphere bundle semi-symmetric?.preprint 2002. Zbl 1076.53032, MR 2075771
Reference: [BKV] Boeckx E., Kowalski O., and Vanhecke L.: Riemannian manifolds of conullity two.World Scientific 1996. MR 1462887
Reference: [CV] Calvaruso G., Vanhecke L.: Semi-symmetric ball-homogeneous spaces and a volume conjecture.Bull. Austral. Math. Soc. 57 (1998), 109–115. Zbl 0903.53031, MR 1623824
Reference: [HSk] Hashimoto N., Sekizawa M.: Three-dimensional conformally flat pseudo-symmetric spaces of constant type.Arch. Math. (Brno) 36 (2000), 279–286. Zbl 1054.53060, MR 1811172
Reference: [K] Kurita M.: On the holonomy group of the conformally flat Riemannian manifold.Nagoya Math. J. 9 (1975), 161–171. MR 0074050
Reference: [R] Ryan P.: A note on conformally flat spaces with constant scalar curvature.Proc. 13th Biennal Seminar of the Canadian Math. Congress Differ. Geom. Appl., Dalhousie Univ. Halifax 1971, 2 (1972), 115–124. MR 0487882
Reference: [S] Szabó Y. I.: Structure theorems on Riemannian manifolds satisfying $R(X,Y) \cdot R=0$.I, the local version, J. Differential Geom. 17 (1982), 531–582. MR 0683165
Reference: [T] Takagi H.: An example of Riemannian manifold satisfying $R(X,Y) \cdot R$ but not $\nabla R =0$.Tôhoku Math. J. 24 (1972), 105–108. MR 0319109
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_4.pdf 228.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo