Full entry |
PDF
(0.2 MB)
Feedback

Grassmannian; Gaussian map; mean curvature; the second fundamental form

References:

[1] Chen W. H.: **Geometry of Grassmannian manifolds as submanifolds**. (in Chinese), Acta Math. Sinica 31(1) (1998), 46–53. MR 0951473

[2] Chen X. P.: **Harmonic maps and Gaussian maps**. (in Chinese), Chin. Ann. Math. 4A(4) (1983), 449–456.

[3] Chern S. S., Goldberg S. I.: **On the volume decreasing property of a class of real harmonic mappings**. Amer. J. Math. 97(1) (1975), 133–147. MR 0367860 | Zbl 0303.53049

[4] Chern S. S., doCarmo M., Kobayashi S.: **Minimal submanifolds of a sphere with second fundamental form of constant length**. Funct. Anal. Rel. Fields (1970), 59–75. MR 0273546

[5] Eells J., Lemaire L.: **Selected topics on harmonic maps**. Expository Lectures from the CBMS Regional Conf. held at Tulane Univ., Dec. 15–19, 1980.

[6] Ruh E. A. Vilms J.: **The tension field of the Gauss map**. Trans. Amer. Math. Soc. 149 (1970), 569–573. MR 0259768

[7] Sealey H. C. J.: **Harmonic maps of small energy**. Bull. London Math. Soc. 13 (1981), 405–408. MR 0631097 | Zbl 0444.58009

[8] Takahashi T.: **Minimal immersions of Riemannian manifolds**. J. Math. Soc. Japan. 18 (1966), 380–385. MR 0198393 | Zbl 0145.18601

[9] Wu G. R., Chen W. H.: **An inequality on matrix and its geometrical application**. (in Chinese), Acta Math. Sinica 31(3) (1988), 348–355. MR 0963085

[10] Yano K., Kon M.: **Structures on Manifolds**. Series in Pure Math. 3 (1984), World Scientific. MR 0794310 | Zbl 0557.53001