Previous |  Up |  Next

Article

Title: Gap properties of harmonic maps and submanifolds (English)
Author: Chen, Qun
Author: Zhou, Zhen-Rong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 59-69
Summary lang: English
.
Category: math
.
Summary: In this article, we obtain a gap property of energy densities of harmonic maps from a closed Riemannian manifold to a Grassmannian and then, use it to Gaussian maps of some submanifolds to get a gap property of the second fundamental forms. (English)
Keyword: Grassmannian
Keyword: Gaussian map
Keyword: mean curvature
Keyword: the second fundamental form
MSC: 53C43
MSC: 58E20
idZBL: Zbl 1112.58013
idMR: MR2142143
.
Date available: 2008-06-06T22:45:08Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107935
.
Reference: [1] Chen W. H.: Geometry of Grassmannian manifolds as submanifolds.(in Chinese), Acta Math. Sinica 31(1) (1998), 46–53. MR 0951473
Reference: [2] Chen X. P.: Harmonic maps and Gaussian maps.(in Chinese), Chin. Ann. Math. 4A(4) (1983), 449–456.
Reference: [3] Chern S. S., Goldberg S. I.: On the volume decreasing property of a class of real harmonic mappings.Amer. J. Math. 97(1) (1975), 133–147. Zbl 0303.53049, MR 0367860
Reference: [4] Chern S. S., doCarmo M., Kobayashi S.: Minimal submanifolds of a sphere with second fundamental form of constant length.Funct. Anal. Rel. Fields (1970), 59–75. MR 0273546
Reference: [5] Eells J., Lemaire L.: Selected topics on harmonic maps.Expository Lectures from the CBMS Regional Conf. held at Tulane Univ., Dec. 15–19, 1980.
Reference: [6] Ruh E. A. Vilms J.: The tension field of the Gauss map.Trans. Amer. Math. Soc. 149 (1970), 569–573. MR 0259768
Reference: [7] Sealey H. C. J.: Harmonic maps of small energy.Bull. London Math. Soc. 13 (1981), 405–408. Zbl 0444.58009, MR 0631097
Reference: [8] Takahashi T.: Minimal immersions of Riemannian manifolds.J. Math. Soc. Japan. 18 (1966), 380–385. Zbl 0145.18601, MR 0198393
Reference: [9] Wu G. R., Chen W. H.: An inequality on matrix and its geometrical application.(in Chinese), Acta Math. Sinica 31(3) (1988), 348–355. MR 0963085
Reference: [10] Yano K., Kon M.: Structures on Manifolds.Series in Pure Math. 3 (1984), World Scientific. Zbl 0557.53001, MR 0794310
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_6.pdf 219.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo