Previous |  Up |  Next

Article

Title: On natural metrics on tangent bundles of Riemannian manifolds (English)
Author: Abbassi, Mohamed Tahar Kadaoui
Author: Sarih, Maâti
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 71-92
Summary lang: English
.
Category: math
.
Summary: There is a class of metrics on the tangent bundle $TM$ of a Riemannian manifold $(M,g)$ (oriented , or non-oriented, respectively), which are ’naturally constructed’ from the base metric $g$ [Kow-Sek1]. We call them “$g$-natural metrics" on $TM$. To our knowledge, the geometric properties of these general metrics have not been studied yet. In this paper, generalizing a process of Musso-Tricerri (cf. [Mus-Tri]) of finding Riemannian metrics on $TM$ from some quadratic forms on $OM \times \mathbb {R}^m$ to find metrics (not necessary Riemannian) on $TM$, we prove that all $g$-natural metrics on $TM$ can be obtained by Musso-Tricerri’s generalized scheme. We calculate also the Levi-Civita connection of Riemannian $g$-natural metrics on $TM$. As application, we sort out all Riemannian $g$-natural metrics with the following properties, respectively: 1) The fibers of $TM$ are totally geodesic. 2) The geodesic flow on $TM$ is incompressible. We shall limit ourselves to the non-oriented situation. (English)
Keyword: Riemannian manifold
Keyword: tangent bundle
Keyword: natural operation
Keyword: $g$-natural metric
Keyword: Geodesic flow
Keyword: incompressibility
MSC: 53A55
MSC: 53B20
MSC: 53C07
MSC: 53C20
MSC: 53D25
idZBL: Zbl 1114.53015
idMR: MR2142144
.
Date available: 2008-06-06T22:45:10Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107936
.
Reference: [1] Abbassi K. M. T.: Note on the classification Theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifold $(M,g)$.Comment. Math. Univ. Carolin. 45 4 (2004), 591–596. Zbl 1097.53013, MR 2103077
Reference: [2] Abbassi K. M. T., Sarih M.: On the differential geometry of the tangent and the tangent sphere bundles with Cheeger-Gromoll metric.preprint.
Reference: [3] Abbassi K. M. T., Sarih M.: Killing vector fields on tangent bundles with Cheeger-Gromoll metric.Tsukuba J. Math. 27 (2) (2003), 295–306. Zbl 1060.53019, MR 2025729
Reference: [4] Abbassi K. M. T., Sarih M.: The Levi-Civita connection of Riemannian natural metrics on the tangent bundle of an oriented Riemannian manifold.preprint.
Reference: [5] Abbassi K. M. T., Sarih M.: On Riemannian $g$-natural metrics of the form $a\cdot g^s +b\cdot g^h +c\cdot g^v$ on the tangent bundle of a Riemannian manifold $(M,g)$.to appear in Mediter. J. Math.
Reference: [6] Besse A. L.: Manifolds all of whose geodesics are closed.Ergeb. Math. (93), Springer-Verlag, Berlin, Heidelberg, New York 1978. Zbl 0387.53010, MR 0496885
Reference: [7] Borisenko A. A., Yampol’skii A. L.: Riemannian geometry of fiber bundles.Russian Math. Surveys 46 (6) (1991), 55–106. MR 1164201
Reference: [8] Cheeger J., Gromoll D.: On the structure of complete manifolds of nonnegative curvature.Ann. of Math. (2) 96 (1972), 413–443. Zbl 0246.53049, MR 0309010
Reference: [9] Dombrowski P.: On the geometry of the tangent bundle.J. Reine Angew. Math. 210 (1962), 73–82. Zbl 0105.16002, MR 0141050
Reference: [10] Epstein D. B. A.: Natural tensors on Riemannian manifolds.J. Differential Geom. 10 (1975), 631–645. Zbl 0321.53039, MR 0415531
Reference: [11] Epstein D. B. A., Thurston W. P.: Transformation groups and natural bundles.Proc. London Math. Soc. 38 (1979), 219–236. Zbl 0409.58001, MR 0531161
Reference: [12] Kobayashi S., Nomizu K.: Foundations of differential geometry.Intersci. Pub. New York (I, 1963 and II, 1967). Zbl 0119.37502, MR 0152974
Reference: [13] Kolář I., Michor P. W., Slovák J.: Natural operations in differential geometry.Springer-Verlag, Berlin 1993. Zbl 0782.53013, MR 1202431
Reference: [14] Kowalski O.: Curvature of the induced Riemannian metric of the tangent bundle of Riemannian manifold.J. Reine Angew. Math. 250 (1971), 124–129. MR 0286028
Reference: [15] Kowalski O., Sekizawa M.: Natural transformations of Riemannian metrics on manifolds to metrics on tangent bundles -a classification.Bull. Tokyo Gakugei Univ. (4) 40 (1988), 1–29. Zbl 0656.53021, MR 0974641
Reference: [16] Kowalski O., Sekizawa M.: On tangent sphere bundles with small or large constant radius.Ann. Global Anal. Geom. 18 (2000), 207–219. Zbl 1011.53025, MR 1795094
Reference: [17] Krupka D., Janyška J.: Lectures on Differential Invariants.University J. E. Purkyně, Brno 1990. MR 1108622
Reference: [18] Musso E., Tricerri F.: Riemannian metrics on tangent bundles.Ann. Mat. Pura Appl. (4) 150 (1988), 1–20. Zbl 0658.53045, MR 0946027
Reference: [19] Nijenhuis A.: Natural bundles and their general properties.in Differential Geometry in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 317–334. Zbl 0246.53018, MR 0380862
Reference: [20] Palais R. S., Terng C. L.: Natural bundles have finite order.Topology 16 (1977), 271–277. Zbl 0359.58004, MR 0467787
Reference: [21] Sasaki S.: On the differential geometry of tangent bundles of Riemannian manifolds.Tohôku Math. J. (I, 10 (1958) 338–354; II, 14 (1962) 146–155). Zbl 0086.15003, MR 0112152
Reference: [22] Sekizawa M.: Curvatures of tangent bundles with Cheeger-Gromoll metric.Tokyo J. Math. 14 (2) (1991), 407–417. Zbl 0768.53020, MR 1138176
Reference: [23] Slovák J.: On natural connections on Riemannian manifolds.Comment. Math. Univ. Carolin. 30 (1989), 389–393. Zbl 0679.53025, MR 1014139
Reference: [24] Stredder P.: Natural differential operators on Riemannian manifolds and representations of the orthogonal and the special orthogonal groups.J. Differential Geom. 10 (1975), 647–660. MR 0415692
Reference: [25] Terng C. L.: Natural vector bundles and natural differential operators.Amer. J. Math. 100 (1978), 775–828. Zbl 0422.58001, MR 0509074
Reference: [26] Willmore T. J.: An introduction to differential geometry.Oxford Univ. Press 1959. Zbl 0086.14401, MR 0159265
Reference: [27] Yano K., Ishihara S.: Tangent and cotangent bundles.Differential Geometry, Marcel Dekker Inc. New York 1973. Zbl 0262.53024, MR 0350650
Reference: [28] Yano K., Kobayashi S.: Prolongations of tensor fields and connections to tangent bundles.J. Math. Soc. Japan (I, II, 18, (2–3) (1966), III, 19 (1967)). Zbl 0147.21501
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_7.pdf 327.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo