Previous |  Up |  Next

Article

Title: Fixed points theorems of non-expanding fuzzy multifunctions (English)
Author: Stouti, Abdelkader
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 117-122
Summary lang: English
.
Category: math
.
Summary: We prove the existence of a fixed point of non-expanding fuzzy multifunctions in $\alpha $-fuzzy preordered sets. Furthermore, we establish the existence of least and minimal fixed points of non-expanding fuzzy multifunctions in $\alpha $-fuzzy ordered sets. (English)
Keyword: fuzzy set
Keyword: $\alpha $-fuzzy preorder relation
Keyword: $\alpha $-fuzzy order relation
Keyword: non-expanding fuzzy multifunction
Keyword: fixed point
MSC: 03E72
MSC: 06A99
MSC: 06D72
MSC: 47H04
MSC: 47H10
MSC: 54H25
idZBL: Zbl 1108.03053
idMR: MR2142147
.
Date available: 2008-06-06T22:45:20Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107939
.
Reference: [1] Beg I., Islam M.: Fuzzy order linear spaces.J. Fuzzy Math. 3 (3) (1995), 659–670. MR 1353830
Reference: [2] Beg I.: Fixed points of fuzzy multivalued mappings with values in fuzzy ordered sets.J. Fuzzy Math. 6 (1) (1998), 127–131. Zbl 0909.47055, MR 1609883
Reference: [3] Beg I.: 0n fuzzy Zorn’s lemma.Fuzzy Sets and Systems 101 (1999), 181–183. MR 1658920
Reference: [4] Beg I.: Fixed points of expansive mappings on fuzzy preordered sets.J. Fuzzy Math., 7(2)(1999), 397-400. Zbl 0941.54037, MR 1697747
Reference: [5] Beg I.: Fixed points of fuzzy monotone maps.Arch. Math. (Brno) 35 (1999), 141–144. Zbl 1047.03044, MR 1711740
Reference: [6] Bose B. K., Sahani D.: Fuzzy mappings and fixed point theorems.Fuzzy Sets and Systems 21 (1987), 53–58. Zbl 0609.54032, MR 0868355
Reference: [7] Billot A.: Economic theory of fuzzy equilibria.Lecture Notes in Econom. and Math. Systems 373 Springer-Verlag, Berlin 1992. Zbl 0758.90008, MR 1227785
Reference: [8] Fang J. X.: On fixed point theorems in fuzzy metric spaces.Fuzzy Sets and Systems 46 (1992), 107–113. Zbl 0766.54045, MR 1153595
Reference: [9] Hadzic O.: Fixed point theorems for multivalued mapping in some classes of fuzzy metric spaces.Fuzzy Sets and Systems 29 (1989), 115–125. MR 0976292
Reference: [10] Heilpern S.: Fuzzy mappings and fixed point theorems.J. Math. Anal. Appl. 83 (1981), 566–569. MR 0641351
Reference: [11] Kaleva O.: A note on fixed points for fuzzy mappings.Fuzzy Sets and Systems 15 (1985), 99–100. Zbl 0564.47028, MR 0785284
Reference: [12] Negoita C. V., Ralescu D. A.: Applications of fuzzy sets to systems analysis.Fuzzy Sets and Systems 1 (1978), 155–167.
Reference: [13] Stouti A.: Fixed point theory for fuzzy monotone multifunctions.J. Fuzzy Math. 11 (2) (2003), 455–466. Zbl 1053.54014, MR 1982177
Reference: [14] Stouti A.: Fixed points of fuzzy monotone multifunctions.Arch. Math. (Brno) 39 (2003), 209–212. Zbl 1108.03312, MR 2010722
Reference: [15] Stouti A.: A fuzzy version of Tarski’s fixpoint Theorem.Arch. Math. (Brno) 40 (2004), 273–279. Zbl 1108.06008, MR 2107022
Reference: [16] Stouti A.: Fixed points of expanding fuzzy multifunctions.J. Fuzzy Math. 12(4) (2004), 1542–1546. Zbl 1079.54022, MR 2125751
Reference: [17] Venugopalan P.: Fuzzy ordered sets.Fuzzy Sets and Systems 46 (1992), 221–226. Zbl 0765.06008, MR 1167316
Reference: [18] Zadeh L. A.: Fuzzy sets.Information and Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427
Reference: [19] Zadeh L. A.: Similarity and fuzzy ordering.Information Sciences 3 (1971), 177–200. MR 0297650
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_10.pdf 178.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo