Previous |  Up |  Next

Article

Title: Singular solutions for the differential equation with $p$-Laplacian (English)
Author: Bartušek, Miroslav
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 123-128
Summary lang: English
.
Category: math
.
Summary: In the paper a sufficient condition for all solutions of the differential equation with $p$-Laplacian to be proper. Examples of super-half-linear and sub-half-linear equations $(|y^{\prime }|^{p-1} y^{\prime })^{\prime } + r(t) |y|^\lambda \operatorname{sgn}y = 0$, $r>0$ are given for which singular solutions exist (for any $p>0$, $\lambda > 0$, $p\ne \lambda $). (English)
Keyword: singular solutions
Keyword: noncontinuable solutions
Keyword: second order equations
MSC: 34C10
MSC: 34C15
MSC: 34D05
idZBL: Zbl 1116.34325
idMR: MR2142148
.
Date available: 2008-06-06T22:45:23Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107940
.
Reference: [1] Bartušek M.: Asymptotic properties of oscillatory solutions of differential equations of $n$-th order.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 1992. MR 1271586
Reference: [2] Bartušek M., Cecchi M., Došlá Z., Marini M.: Global monotonicity and oscillation for second order differential equation.Czechoslovak Math. J., to appear. Zbl 1081.34029, MR 2121668
Reference: [3] Coffman C. V., Ullrich D. F.: On the continuation of solutions of a certain non-linear differential equation.Monatsh. Math. B 71 (1967), 385–392. Zbl 0153.40204, MR 0227494
Reference: [4] Coffman C. V., Wong J. S. W.: Oscillation and nonoscillation theorems for second order differential equations.Funkcial. Ekvac. 15 (1972), 119–130. MR 0333337
Reference: [5] Cecchi M., Došlá Z., Marini M.: On nonoscillatory solutions of differential equations with $p$-Laplacian.Adv. Math. Sci. Appl. 11 (2001), 419–436. Zbl 0996.34039, MR 1842385
Reference: [6] Došlý O.: Qualitative theory of half-linear second order differential equations.Math. Bohem. 127 (2002), 181–195. MR 1981523
Reference: [7] Heidel J. W.: Uniqueness, continuation and nonoscillation for a second order differential equation.Pacific J. Math. 32 (1970), 715–721. MR 0259244
Reference: [8] Mirzov D.: Asymptotic properties of solutions of systems of nonlinear nonautonomous ordinary differential equations.Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 2004. Zbl 1154.34300, MR 2144761
Reference: [9] Kiguradze I., Chanturia T.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Kluwer, Dordrecht 1993. Zbl 0782.34002
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_11.pdf 203.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo