Previous |  Up |  Next

Article

Title: Projective reparametrization of homogeneous curves (English)
Author: Doubrov, Boris
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 1
Year: 2005
Pages: 129-133
Summary lang: English
.
Category: math
.
Summary: We study the conditions when locally homogeneous curves in homogeneous spaces admit a natural projective parameter. In particular, we prove that this is always the case for trajectories of homogeneous nilpotent elements in parabolic spaces. On algebraic level this corresponds to the generalization of Morozov–Jacobson theorem to graded semisimple Lie algebras. (English)
Keyword: homogeneous submanifold
Keyword: symmetry algebra
Keyword: nilpotent elements
Keyword: $sl_2$-tripple
MSC: 17B20
MSC: 17B70
MSC: 53C30
idZBL: Zbl 1122.53029
idMR: MR2142149
.
Date available: 2008-06-06T22:45:26Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107941
.
Reference: [1] Bourbaki N.: Éléments de mathématique, Fasc. XXXVIII: Groupes et algèbres de Lie. Chap. VII: Sous-algèbres de Cartan, éléments réguliers. Chap. VIII: Algèbres de Lie semi-simples déployées.Actualités scientifiques et industrielles, 1364, Paris, Hermann 1975. Zbl 0329.17002, MR 0453824
Reference: [2] Cap A., Slovák J., Žádník V.: On distinguished curves in parabolic geometries.Transform. Groups 9 (2004), 143–166. Zbl 1070.53021, MR 2056534
Reference: [3] Doubrov B., Komrakov B., Rabinovich M.: Homogeneous surfaces in three-dimensional affine geometry.In: Geometry and topology of submanifolds, VIII, Singapore, World Scientific 1996, 168–178. MR 1434565
Reference: [4] Doubrov B., Komrakov B.: Classification of homogeneous submanifolds in homogeneous spaces.Lobachevskii Journal of Mathematics 3 (1999), 19–38. Zbl 0964.53035, MR 1743130
Reference: [5] Eastwood M., Slovák J.: Preferred parametrizations on homogeneous curves.arXiv: math.DG/0311456.
Reference: [6] Hermann R.: Sophus Lie’s 1880 transformation group paper.Math. Sci. Press Brookline 1975. Zbl 0406.22006, MR 0460053
Reference: [7] Jacobson N.: Lie algebras.Intersci. Tracts in Pure and Appl. Math. 10, New-York–London, John Wiley and Sons 1962. Zbl 0121.27504, MR 0143793
Reference: [8] Lie S.: Theorie der Transformationgruppen.Bd. 3, Leipzig, Teubner, 1893.
Reference: [9] Vinberg E.: Classification of homogeneous nilpotent elements of a semisimple graded Lie algebra.Sel. Math. Sov. 6 (1987), 15–35. Zbl 0612.17010
.

Files

Files Size Format View
ArchMathRetro_041-2005-1_12.pdf 189.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo