Previous |  Up |  Next

Article

Title: Asymptotic stability for sets of polynomials (English)
Author: Müller, Thomas W.
Author: Schlage-Puchta, Jan-Christoph
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 2
Year: 2005
Pages: 151-155
Summary lang: English
.
Category: math
.
Summary: We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author (“Finite group actions and asymptotic expansion of $e^{P(z)}$", Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find that the collection of entire functions $\exp (\mathfrak {P})$ with $\mathfrak {P}$ the set of all real polynomials $P(z)$ satisfying Hayman’s condition $[z^n]\exp (P(z))>0\,(n\ge n_0)$ is asymptotically stable. This answers a question raised in loc. cit. (English)
Keyword: power series
Keyword: coefficients
Keyword: asymptotic expansion
MSC: 30B10
MSC: 30D15
idZBL: Zbl 1109.30001
idMR: MR2164664
.
Date available: 2008-06-06T22:45:35Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107945
.
Reference: [1] Dress A., Müller T.: Decomposable functors and the exponential principle.Adv. in Math. 129 (1997), 188–221. Zbl 0947.05002, MR 1462733
Reference: [2] Hayman W.: A generalisation of Stirling’s formula.J. Reine u. Angew. Math. 196 (1956), 67–95. MR 0080749
Reference: [3] Müller T.: Finite group actions and asymptotic expansion of $e^{P(z)}$.Combinatorica 17 (1997), 523–554. MR 1645690
Reference: [4] Stanley R. P.: Enumerative Combinatorics.vol. 2, Cambridge University Press, 1999. Zbl 0945.05006, MR 1676282
.

Files

Files Size Format View
ArchMathRetro_041-2005-2_3.pdf 191.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo