Previous |  Up |  Next

Article

Title: On left $(\theta,\varphi)$-derivations of prime rings (English)
Author: Ashraf, Mohammad
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 2
Year: 2005
Pages: 157-166
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a $2$-torsion free prime ring. Suppose that $\theta , \phi $ are automorphisms of $R$. In the present paper it is established that if $R$ admits a nonzero Jordan left $(\theta ,\theta )$-derivation, then $R$ is commutative. Further, as an application of this resul it is shown that every Jordan left $(\theta ,\theta )$-derivation on $R$ is a left $(\theta ,\theta )$-derivation on $R$. Finally, in case of an arbitrary prime ring it is proved that if $R$ admits a left $(\theta ,\phi )$-derivation which acts also as a homomorphism (resp. anti-homomorphism) on a nonzero ideal of $R$, then $d=0$ on $R$. (English)
Keyword: Lie ideals
Keyword: prime rings
Keyword: derivations
Keyword: Jordan left derivations
Keyword: left derivations
Keyword: torsion free rings
MSC: 16N60
MSC: 16W25
idZBL: Zbl 1114.16031
idMR: MR2164665
.
Date available: 2008-06-06T22:45:37Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107946
.
Reference: [1] Ashraf M., Rehman N.: On Lie ideals and Jordan left derivation of prime rings.Arch. Math.(Brno) 36 (2000), 201–206. MR 1785037
Reference: [2] Ashraf M., Rehman N., Quadri M. A.: On $(\sigma ,\tau )$- derivations in certain class of rings.Rad. Mat. 9 (1999), 187–192. MR 1790206
Reference: [3] Ashraf M., Rehman N., Quadri M. A.: On Lie ideals and $(\sigma ,\tau )$-Jordan derivations on prime rings.Tamkang J. Math. 32 (2001), 247–252. Zbl 1006.16044, MR 1865617
Reference: [4] Ashraf M., Rehman N., Shakir Ali: On Jordan left derivations of Lie ideals in prime rings.Southeast Asian Bull. Math. 25 (2001), 375–382.
Reference: [5] Awtar R.: Lie and Jordan structures in prime rings with derivations.Proc. Amer. Math. Soc. 41 (1973), 67–74. MR 0318233
Reference: [6] Awtar R.: Lie ideals and Jordan derivations of prime rings.Proc. Amer. Math. Soc. 90 (1984), 9–14. Zbl 0528.16020, MR 0722405
Reference: [7] Bell H. E., Daif M. N.: On derivations and commutativity in prime rings.Acta Math. Hungar. 66 (1995), 337–343. Zbl 0822.16033, MR 1314011
Reference: [8] Bell H. E., Kappe L. C.: Rings in which derivations satisfy certain algebraic conditions.Acta Math. Hungar. 53 (1989), 339–346. Zbl 0705.16021, MR 1014917
Reference: [9] Bergen J., Herstein I. N., Kerr J. W.: Lie ideals and derivations of prime rings.J. Algebra 71 (1981), 259–267. Zbl 0463.16023, MR 0627439
Reference: [10] Bresar M.: Jordan derivations on semiprime rings.Proc. Amer. Math. Soc. 104 (1988), 1003–1006. Zbl 0691.16039, MR 0929422
Reference: [11] Bresar M., Vukman J.: Jordan $(\theta ,\phi )$-derivations.Glas. Mat., III. Ser. 26 (1991), 13–17. MR 1269170
Reference: [12] Bresar M., Vukman J.: On left derivations and related mappings.Proc. Amer. Math. Soc. 110 (1990), 7–16. Zbl 0703.16020, MR 1028284
Reference: [13] Cairini L., Giambruno A.: Lie ideals and nil derivations.Boll. Un. Mat. Ital. 6 (1985), 497–503. MR 0821089
Reference: [14] Deng Q.: Jordan $(\theta ,\phi )$-derivations.Glasnik Mat. 26 (1991), 13–17. MR 1269170
Reference: [15] Herstein I. N.: Jordan derivations of prime rings.Proc. Amer. Math. Soc. 8 (1957), 1104–1110. MR 0095864
Reference: [16] Herstein I. N.: Topics in ring theory.Univ. of Chicago Press, Chicago 1969. Zbl 0232.16001, MR 0271135
Reference: [17] Kill-Wong Jun, Byung-Do Kim: A note on Jordan left derivations.Bull. Korean Math. Soc. 33 (1996), 221–228. MR 1405475
Reference: [18] Posner E. C.: Derivations in prime rings.Proc. Amer. Math. Soc. 8 (1957), 1093–1100. MR 0095863
Reference: [19] Vukman J.,: Commuting and centralizing mappings in prime rings.Proc. Amer. Math. Soc. 109 (1990), 47–52. Zbl 0697.16035, MR 1007517
Reference: [20] Vukman J.: Jordan left derivations on semiprime rings.Math. J. Okayama Univ. 39 (1997), 1–6. Zbl 0937.16044, MR 1680747
.

Files

Files Size Format View
ArchMathRetro_041-2005-2_4.pdf 205.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo