Previous |  Up |  Next

Article

Title: Boundary value problems for first order multivalued differential systems (English)
Author: Boucherif, A.
Author: Merabet, N.Chiboub-Fellah
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 2
Year: 2005
Pages: 187-195
Summary lang: English
.
Category: math
.
Summary: We present some existence results for boundary value problems for first order multivalued differential systems. Our approach is based on topological transversality arguments, fixed point theorems and differential inequalities. (English)
Keyword: boundary value problems
Keyword: multivalued differential equations
Keyword: topological transversality theorem
Keyword: fixed points
Keyword: differential inequalities
MSC: 34A60
MSC: 34B15
MSC: 47H10
idZBL: Zbl 1117.34006
idMR: MR2164669
.
Date available: 2008-06-06T22:45:48Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107950
.
Reference: [1] Agarwal R. P., O’Regan D.: Set valued mappings With applications in nonlinear analysis.Taylor & Francis, London 2002. Zbl 0996.00018, MR 1938034
Reference: [2] Andres J.: Nielsen number and multiplicity results for multivalued boundary value problems.Boston MA, Birkhäuser, Progr. Nonlinear Differ. Equ. Appl. 43 (2001), 175–187. Zbl 0996.34012, MR 1800619
Reference: [3] Andres J., Bader R.: Asymptotic boundary value problems in Banach spaces.J. Math. Anal. Appl. 274 (2002), 437–457. Zbl 1025.34059, MR 1936707
Reference: [4] Anichini G.: Boundary value problems for multivalued differential equations and controllability.J. Math. Anal. Appl. 105 (1985), 372–382. MR 0778472
Reference: [5] Anichini G., Conti G.: Boundary value problems for systems of differential equations.Nonlinearity 1 (1988), 1–10.
Reference: [6] Aubin J. P., Cellina A.: Differential inclusions, Set-valued maps and viability theory.Springer Verlag, New York 1984. Zbl 0538.34007, MR 0755330
Reference: [7] Bernfeld S., Lakshmikantham V.: An introduction to nonlinear boundary value Problems.Academic Press, New York 1974. Zbl 0286.34018, MR 0445048
Reference: [8] Deimling K.: Multivalued differential equations.W. de Gruyter, Berlin 1992. Zbl 0820.34009, MR 1189795
Reference: [9] Deimling K.: Multivalued differential equations and dry friction problems.in Delay and Differential Equations, (A. M. Fink, R. K. Miller and W. Kliemann, Eds.), 99–106, World Scientific Publ.,N. J. 1992. Zbl 0820.34009, MR 1170147
Reference: [10] Frigon M.: Application de la transversalite topologique a des problemes non lineaires pour des equations differentielles ordinaires.Dissertationes Math. 296, PWN, Warsaw 1990. MR 1075674
Reference: [11] Granas A., Dugundji J.: Fixed point theory.Springer Verlag 2003. Zbl 1025.47002, MR 1987179
Reference: [12] Granas A., Frigon M.: Topological methods in differential equations and inclusions.Kluwer Academic Publ., Dordrecht 1995. Zbl 0829.00024, MR 1368668
Reference: [13] Hu S., Papageorgiou N. S.: Handbook of multivalued analysis.2 Applications, Kluwer Acad. Publ. Dordrecht 2000. Zbl 0943.47037, MR 1741926
Reference: [14] Lasota A., Opial Z.: An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781–786. Zbl 0151.10703, MR 0196178
Reference: [15] Medved M.: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions.J. Math. Anal. Appl. 214 (1997), 349–366. Zbl 0893.26006, MR 1475574
Reference: [16] Miller L. E.: Generalized boundary value problems.J. Math. Anal. Appl. 74 (1980), 233–246. Zbl 0431.34022, MR 0568383
Reference: [17] O’Regan D.: Fixed-point theory for the sum of two operators.Applied Math. Letters 9 1 (1996), 1–8. Zbl 0858.34049
Reference: [18] Pruzko T.: Topological degree methods in multivalued boundary value problems.Nonlinear Anal. T. M. A. 5 9 (1982), 959–973. MR 0633011
Reference: [19] Senkyrík M., Guenther R.: Boundary value problems with discontinuities in the spacial variable.J. Math. Anal. Appl. 193 (1995), 296–305. MR 1338514
.

Files

Files Size Format View
ArchMathRetro_041-2005-2_8.pdf 221.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo