Previous |  Up |  Next

Article

Title: On generalized q.f.d. modules (English)
Author: Saleh, Mohammad
Author: Jain, S. K.
Author: López-Permouth, S. R.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 3
Year: 2005
Pages: 243-251
Summary lang: English
.
Category: math
.
Summary: A right $R$-module $M$ is called a generalized q.f.d. module if every M-singular quotient has finitely generated socle. In this note we give several characterizations to this class of modules by means of weak injectivity, tightness, and weak tightness that generalizes the results in [sanh1], Theorem 3. In particular, it is shown that a module $M$ is g.q.f.d. iff every direct sum of $M$-singular $M$-injective modules in ${\sigma [M]}$ is weakly injective iff every direct sum of $M$-singular weakly tight is weakly tight iff every direct sum of the injective hulls of $M$-singular simples is weakly $R$-tight. (English)
Keyword: tight
Keyword: weakly tight
Keyword: weakly injective
Keyword: q.f.d.
Keyword: generalized q.f.d. modules
Keyword: generalized weakly semisimple
MSC: 16D10
MSC: 16D50
MSC: 16D60
MSC: 16D70
MSC: 16D90
idZBL: Zbl 1114.16004
idMR: MR2188380
.
Date available: 2008-06-06T22:46:05Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107955
.
Reference: [1] Albu T., Nastasescu C.: Relative finiteness in module theory.Marcel Dekker 1984. Zbl 0556.16001, MR 0749933
Reference: [2] Al-Huzali A., Jain S. K., López-Permouth S. R.: Rings whose cyclics have finite Goldie dimension.J. Algebra 153 (1992), 37–40. MR 1195405
Reference: [3] Berry D.: Modules whose cyclic submodules have finite dimension.Canad. Math. Bull. 19 (1976), 1–6. Zbl 0335.16025, MR 0417244
Reference: [4] Brodskii G., Saleh M., Thuyet L., Wisbauer R.: On weak injectivity of direct sums of modules.Vietnam J. Math. 26 (1998), 121–127. MR 1684323
Reference: [5] Camillo V. P.: Modules whose quotients have finite Goldie dimension.Pacific J. Math. 69 (1977), 337–338. Zbl 0356.13003, MR 0442020
Reference: [6] Dhompong S., Sanwong J., Plubtieng S., Tansee H.: On modules whose singular subgenerated modules are weakly injective.Algebra Colloq. 8 (2001), 227–236. MR 1838519
Reference: [7] Dung N. V., Huynh D. V., Smith P., Wisbauer R.: Extending modules.Pitman, 1994. Zbl 0841.16001
Reference: [8] Golan J. S., López-Permouth S. R.: QI-filters and tight modules.Comm. Algebra 19 (1991), 2217–2229. MR 1123120
Reference: [9] Jain S. K., López-Permouth S. R.: Rings whose cyclics are essentially embeddable in projective modules.J. Algebra 128 (1990), 257–269. MR 1031920
Reference: [10] Jain S. K., López-Permouth S. R., Oshiro K., Saleh M.: Weakly projective and weakly injective modules.Canad. J. Math. 34 (1994), 972–981. MR 1295126
Reference: [11] Jain S. K., López-Permouth S. R., Singh S.: On a class of QI-rings.Glasgow J. Math. 34 (1992), 75–81. MR 1145633
Reference: [12] Jain S. K., López-Permouth S. R.: A survey on the theory of weakly injective modules.In: Computational Algebra, 205–233, Lecture notes in pure and applied mathematics, Marcel Dekker, Inc., New York, 1994. MR 1245954
Reference: [13] Kurshan A. P.: Rings whose cyclic modules have finitely generated socle.J. Algebra 14 (1970), 376–386. Zbl 0199.35503, MR 0260780
Reference: [14] López-Permouth S. R.: Rings characterized by their weakly injective modules.Glasgow Math. J. 34 (1992), 349–353. MR 1181777
Reference: [15] Malik S., Vanaja N.: Weak relative injective M-subgenerated modules.Advances in Ring Theory, Birkhauser, 1997, 221–239. Zbl 0934.16002, MR 1602677
Reference: [16] Page S., Zhou Y.: When direct sums of singular injectives are injective.In: Ring theory, Proceedings of the Ohio State-Denison Conference, World Scientific Publishing Co., 1993. Zbl 0853.16005, MR 1344237
Reference: [17] Page S., Zhou Y.: On direct sums of injective modules and chain conditions.Canad. J. Math. 46 (1994), 634–647. Zbl 0807.16006, MR 1276116
Reference: [18] Page S., Zhou Y.: Direct sums of quasi-injective modules, injective hulls, and natural classes.Comm. Alg. 22 (1994), 2911–2923. MR 1272360
Reference: [19] Saleh M.: A note on tightness.Glasgow Math. J. 41 (1999), 43–44. Zbl 0923.16003, MR 1689655
Reference: [20] Saleh M., Abdel-Mohsen A.: On weak injectivity and weak projectivity.In: Proceedings of the Mathematics Conference, World Scientific Press, New Jersey, 2000, 196–207. Zbl 0985.16002, MR 1773029
Reference: [21] Saleh M., Abdel-Mohsen A.: A note on weak injectivity.FJMS 11(2) (2003), 199–206. Zbl 1063.16004, MR 2020503
Reference: [22] Saleh M.: On q.f.d. modules and q.f.d. rings.Houston J. Math. 30 (2004), 629–636. Zbl 1070.16002, MR 2083867
Reference: [23] Saleh M.: On weakly projective and weakly injective modules.Comment. Math. Univ. Corolin. 45 (2004), 389–402. Zbl 1101.16004, MR 2103135
Reference: [24] Sanh N. V., Shum K. P., Dhompongsa S., Wongwai S.: On quasi-principally injective modules.Algebra Colloq. 6 (1999), 296–276. Zbl 0949.16003, MR 1809646
Reference: [25] Sanh N. V., Dhompongsa S., Wongwai S.: On generalized q.f.d. modules and rings.Algebra and Combinatorics (1999), 367–372. MR 1733193
Reference: [26] Wisbauer R.: Foundations of module and ring theory.Gordon and Breach, 1991. Zbl 0746.16001, MR 1144522
Reference: [27] Zhou Y.: Notes on weakly semisimple rings.Bull. Austral. Math. Soc. 52 (1996), 517–525. MR 1358705
Reference: [28] Zhou Y.: Weak injectivity and module classes.Comm. Algebra 25 (1997), 2395–2407. Zbl 0934.16004, MR 1459568
.

Files

Files Size Format View
ArchMathRetro_041-2005-3_1.pdf 217.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo