Previous |  Up |  Next


complex Grassmann manifold; harmonic map; harmonic sequence; genus; the generalized Frenet formulae
Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given.
[1] Chern S. S., Wolfson J. G.: Harmonic maps of the two-spheres into a complex Grassmann manifold II. Ann. Math. 125 (1987), 301–335. MR 0881271
[2] Wolfson J. G.: Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds. J. Diff. Geom. 27 (1988), 161–178. MR 0918462
[3] Liao R.: Cyclic properties of the harmonic sequence of surfaces in CP$^{n}$. Math. Ann. 296 (1993), 363–384. MR 1219907
[4] Dong Y. X.: On the isotropy of harmonic maps from surfaces to complex projective spaces. Inter. J. Math. 3 (1992), 165–177. MR 1146809 | Zbl 0759.58013
[5] Jensen G. R., Rigoli M.: On the isotropy of compact minimal surfaces in CP$^{n}$. Math. Z. 200 (1989), 169–180. MR 0978292
[6] Burstall F. E., Wood J. C.: The construction of harmonic maps into complex Grassmannian. J. Diff. Geom. 23 (1986), 255–297. MR 0852157
[7] Uhlenbeck K.: Harmonic maps into Lie groups (classical solutions of the chiral model. J. Diff. Geom. 30 (1989), 1–50. MR 1001271 | Zbl 0677.58020
[8] Shen Y. B., Dong Y. X.: On pseudo-holomorphic curves in complex Grassmannian. Chin. Ann. Math. 20B (1999), 341–350. MR 1749475
[9] Eschenburg J. H., Guadalupe I. V., Tribuzy R. A.: The fundamental equations of minimal surfaces in CP$^{2}$. Math. Ann. 270 (1985), 571–598. MR 0776173
[10] Eells J., Wood J. C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49 (1983), 217–263. MR 0716372 | Zbl 0528.58007
Partner of
EuDML logo