Previous |  Up |  Next

Article

Title: On the degeneration of harmonic sequences from surfaces into complex Grassmann manifolds (English)
Author: Ye, Bing Wu
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 3
Year: 2005
Pages: 273-280
Summary lang: English
.
Category: math
.
Summary: Let $f:M\rightarrow G(m,n)$ be a harmonic map from surface into complex Grassmann manifold. In this paper, some sufficient conditions for the harmonic sequence generated by $f$ to have degenerate $\partial ^{\prime }$-transform or $\partial ^{\prime \prime }$-transform are given. (English)
Keyword: complex Grassmann manifold
Keyword: harmonic map
Keyword: harmonic sequence
Keyword: genus
Keyword: the generalized Frenet formulae
MSC: 53B30
MSC: 53C42
MSC: 53C43
MSC: 58E20
idZBL: Zbl 1114.53058
idMR: MR2188383
.
Date available: 2008-06-06T22:46:13Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107958
.
Reference: [1] Chern S. S., Wolfson J. G.: Harmonic maps of the two-spheres into a complex Grassmann manifold II.Ann. Math. 125 (1987), 301–335. MR 0881271
Reference: [2] Wolfson J. G.: Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds.J. Diff. Geom. 27 (1988), 161–178. MR 0918462
Reference: [3] Liao R.: Cyclic properties of the harmonic sequence of surfaces in CP$^{n}$.Math. Ann. 296 (1993), 363–384. MR 1219907
Reference: [4] Dong Y. X.: On the isotropy of harmonic maps from surfaces to complex projective spaces.Inter. J. Math. 3 (1992), 165–177. Zbl 0759.58013, MR 1146809
Reference: [5] Jensen G. R., Rigoli M.: On the isotropy of compact minimal surfaces in CP$^{n}$.Math. Z. 200 (1989), 169–180. MR 0978292
Reference: [6] Burstall F. E., Wood J. C.: The construction of harmonic maps into complex Grassmannian.J. Diff. Geom. 23 (1986), 255–297. MR 0852157
Reference: [7] Uhlenbeck K.: Harmonic maps into Lie groups (classical solutions of the chiral model.J. Diff. Geom. 30 (1989), 1–50. Zbl 0677.58020, MR 1001271
Reference: [8] Shen Y. B., Dong Y. X.: On pseudo-holomorphic curves in complex Grassmannian.Chin. Ann. Math. 20B (1999), 341–350. MR 1749475
Reference: [9] Eschenburg J. H., Guadalupe I. V., Tribuzy R. A.: The fundamental equations of minimal surfaces in CP$^{2}$.Math. Ann. 270 (1985), 571–598. MR 0776173
Reference: [10] Eells J., Wood J. C.: Harmonic maps from surfaces to complex projective spaces.Adv. Math. 49 (1983), 217–263. Zbl 0528.58007, MR 0716372
.

Files

Files Size Format View
ArchMathRetro_041-2005-3_4.pdf 208.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo