Title:
|
Fixed points and best approximation in Menger convex metric spaces (English) |
Author:
|
Beg, Ismat |
Author:
|
Abbas, Mujahid |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
41 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
389-397 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We obtain necessary conditions for the existence of fixed point and approximate fixed point of nonexpansive and quasi nonexpansive maps defined on a compact convex subset of a uniformly convex complete metric space. We obtain results on best approximation as a fixed point in a strictly convex metric space. (English) |
Keyword:
|
fixed point |
Keyword:
|
convex metric space |
Keyword:
|
uniformly convex metric space |
Keyword:
|
strictly convex metric space |
Keyword:
|
best approximation |
Keyword:
|
nonexpansive map |
MSC:
|
47H09 |
MSC:
|
47H10 |
MSC:
|
54H25 |
idZBL:
|
Zbl 1109.47047 |
idMR:
|
MR2195492 |
. |
Date available:
|
2008-06-06T22:46:39Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107968 |
. |
Reference:
|
[1] Aksoy A. G., Khamsi M. A.: Nonstandard methods in fixed point theory.Springer, New York, Berlin, 1990. Zbl 0713.47050, MR 1066202 |
Reference:
|
[2] Aronszajn N., Panitchpakdi P.: Extension of uniformly continuous transformations and hyper convex metric spaces.Pacific J. Math. 6 (1956), 405–439. MR 0084762 |
Reference:
|
[3] Ayerbe Toledano J. M., Dominguez Benavides T., Lopez Acedo G.: Measures of noncompactness in metric fixed point theory.Birkhauser, Basel, 1997. Zbl 0885.47021, MR 1483889 |
Reference:
|
[4] Beg I., Azam A.: Fixed points of asymptotically regular multivalued mappings.J. Austral. Math. Soc. Ser. A 53(3) (1992), 313–326. Zbl 0765.54036, MR 1187851 |
Reference:
|
[5] Beg I., Azam A.: Common fixed points for commuting and compatible maps.Discuss. Math. Differential Incl. 16 (1996), 121–135. Zbl 0912.47033, MR 1646650 |
Reference:
|
[6] Berard A.: Characterization of metric spaces by the use of their mid sets intervals.Fund. Math. 73 (1971), 1–7. MR 0295300 |
Reference:
|
[7] Blumenthal L. M.: Distance Geometry.Clarendon Press, Oxford, 1953. Zbl 0050.38502, MR 0054981 |
Reference:
|
[8] Browder F. E.: Nonexpansive nonlinear operators in Banach spaces.Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 0187120 |
Reference:
|
[9] Dotson W. G.: On fixed points of nonexpansive mappings in non convex sets.Proc. Amer. Math. Soc. 38 (1973), 155–156. MR 0313894 |
Reference:
|
[10] Goeble K., Kirk W. A.: Topics in metric fixed point theory.Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. MR 1074005 |
Reference:
|
[11] Goeble K., Reich S.: Uniform convexity, hyperolic geometry, and nonexpansive mappings.Marcel Dekker, Inc. New York and Basel (1984). MR 0744194 |
Reference:
|
[12] Gohde D.: Zum Prinzip der kontraktiven Abbildung.Math. Nachr. 30 (1995), 251–258. MR 0190718 |
Reference:
|
[13] Habiniak L.: Fixed point theorem and invarient approximation.J. Approx. Theory 56 (1984), 241–244. |
Reference:
|
[14] Hadzic O.: Almost fixed point and best approximation theorems in H-Spaces.Bull. Austral. Math. Soc. 53 (1996), 447–454. MR 1388593 |
Reference:
|
[15] Khalil R.: Extreme points of the unit ball of Banach spaces.Math. Rep. Toyama Univ. 4 (1981), 41–45. Zbl 0473.46012, MR 0627961 |
Reference:
|
[16] Khalil R.: Best approximation in metric spaces.Proc. Amer. Math. Soc. 103 (1988), 579–586. Zbl 0652.51019, MR 0943087 |
Reference:
|
[17] Kirk W. A.: A fixed point theorem for mappings which do not increase distances.Amer. Math. Monthly 72 (1965), 1004–1006. Zbl 0141.32402, MR 0189009 |
Reference:
|
[18] Menger K.: Untersuchungen über allegemeine Metrik.Math. Ann. 100 (1928), 75–63. MR 1512479 |
Reference:
|
[19] Prus B., Smarzewski R. S.: Strongly unique best approximation and centers in uniformly convex spaces.J. Math. Anal. Appl. 121 (1978), 85–92. MR 0869515 |
Reference:
|
[20] Veeramani P.: On some fixed point theorems on uniformly convex Banach spaces.J. Math. Anal. Appl. 167 (1992), 160–166. Zbl 0780.47047, MR 1165265 |
. |