Previous |  Up |  Next

Article

Title: Generalizations of the Fan-Browder fixed point theorem and minimax inequalities (English)
Author: Balaj, Mircea
Author: Muresan, Sorin
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 41
Issue: 4
Year: 2005
Pages: 399-407
Summary lang: English
.
Category: math
.
Summary: In this paper fixed point theorems for maps with nonempty convex values and having the local intersection property are given. As applications several minimax inequalities are obtained. (English)
Keyword: map
Keyword: fixed point
Keyword: local intersection property
Keyword: minimax inequality
MSC: 47H10
MSC: 49J35
MSC: 54C60
MSC: 54H25
idZBL: Zbl 1111.54032
idMR: MR2195493
.
Date available: 2008-06-06T22:46:42Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107969
.
Reference: [1] Balaj M.: A variant of a fixed point theorem of Browder and some applications.Math. Montisnigri 9 (1998), 5–13. Zbl 0999.47045, MR 1657668
Reference: [2] Balaj M.: Applications of two matching theorems in generalized convex spaces.Nonlinear Anal. Forum 7 (2002), 123–130. Zbl 1034.54016, MR 1959938
Reference: [3] Ben-El-Mechaiekh H., Deguire P., Granas A.: Point fixes et coincidences pour les applications multivoques.C. R. Acad. Sci. Paris 295 (1982), I 337–340, II 381–384.
Reference: [4] Browder F. E.: The fixed point theory of multivalued mappings in topological vector spaces.Math. Ann. 177 (1968), 238–301. MR 0229101
Reference: [5] Browder F. E.: Coincidence theorems, minimax theorems and variational inequalities.Conference in Modern Analysis and Probability, New Heaven, Conn., 1982: Contemp. Math. 26, pp. 67–80 (Amer. Math. Soc. Providence, RI., 1984). MR 0737389
Reference: [6] Deguire P.: Browder-Fan fixed point theorem and related results.Discuss. Math. Differential Incl. 15 (1995), 149–162. Zbl 0931.47041, MR 1390397
Reference: [7] Deguire P., Lassonde M.: Families sélectantes.Topol. Methods Nonlinear Anal. 5 (1995), 261–269. MR 1374063
Reference: [8] Ding X. P.: New H-KKM theorems and equilibria of generalized games.Indian J. Pure Appl. Math. 27 (1996), 1057–1071. MR 1420096
Reference: [9] Ding X. P.: A coincidence theorem involving contractible spaces.Appl. Math. Lett. 10 (1997), 53–56. Zbl 0879.54055, MR 1457639
Reference: [10] Fan K.: A generalization of Tichonoff’s fixed point theorems.Math. Ann. 142 (1961), 305–310. MR 0131268
Reference: [11] Fan K.: Sur une théorème minimax.C.R. Acad. Sci. Paris 259 (1964), 3925–3928. MR 0174955
Reference: [12] Fan K.: A minimax inequality and applications.In: Inequalities III (O. Shisha, ed.), pp. 103–113, Academic Press, New York, 1972. Zbl 0302.49019, MR 0341029
Reference: [13] Himmelberg C. J.: Fixed points of compact multifunctions.J. Math. Anal. Appl. 38 (1972), 205–207. Zbl 0225.54049, MR 0303368
Reference: [14] Lan K., Webb J.: New fixed point theorems for a family of mappings and applications to problems on set with convex sections.Proc. Amer. Math. Soc. 126 (1998), 1127–1132. MR 1451816
Reference: [15] Lassonde M.: On the use of KKM multifunctions in fixed point theory and related topics.J. Math. Anal. Appl. 97 (1983), 151–201. Zbl 0527.47037, MR 0721236
Reference: [16] Mehta G.: Fixed points, equilibria and maximal elements in linear topological spaces.Comment. Math. Univ. Carolin. 28 (1987), 377–385. Zbl 0632.47041, MR 0904761
Reference: [17] Park S.: Generalized Fan-Browder fixed point theorems and their applications.In: Collection of Papers Dedicated to J. G. Park (1989), 164–176. MR 1183001
Reference: [18] Sion M.: On general minimax theorems.Pacific J. Math. 8 (1958), 171–176. Zbl 0163.38203, MR 0097026
Reference: [19] Tarafdar E.: On nonlinear variational variational inequalities.Proc. Amer. Math. Soc. 67 (1977), 95–98. MR 0467408
Reference: [20] Wu X., Shen S.: A further generalization of Yannelis-Prabhakar’s continous selection theorem and its applications.J. Math. Anal. Appl. 197 (1996), 61–74. MR 1371276
Reference: [21] Yannelis N. C., Prabhakar N. D.: Existence of maximal elements and equilibria in linear topological spaces.J. Math. Econom. 12 (1983), 233–245. Zbl 0536.90019, MR 0743037
.

Files

Files Size Format View
ArchMathRetro_041-2005-4_5.pdf 210.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo