Previous |  Up |  Next

Article

Title: On some nonlinear alternatives of Leray-Schauder type and functional integral equations (English)
Author: Dhage, Bapurao Chandra
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 11-23
Summary lang: English
.
Category: math
.
Summary: In this paper, some new fixed point theorems concerning the nonlinear alternative of Leray-Schauder type are proved in a Banach algebra. Applications are given to nonlinear functional integral equations in Banach algebras for proving the existence results. Our results of this paper complement the results that appear in Granas et. al. (Granas, A., Guenther, R. B. and Lee, J. W., Some existence principles in the Caratherodony theory of nonlinear differential system, J. Math. Pures Appl. 70 (1991), 153–196.) and Dhage and Regan (Dhage, B. C. and O’Regan, D., A fixed point theorem in Banach algebras with applications to functional integral equations, Funct. Differ. Equ. 7(3-4)(2000), 259–267.). (English)
Keyword: Banach algebra
Keyword: fixed point theorem
Keyword: integral equations
MSC: 45G10
MSC: 47H10
MSC: 47N20
idZBL: Zbl 1164.47357
idMR: MR2227108
.
Date available: 2008-06-06T22:47:00Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107977
.
Reference: [1] Browder F. E.: Nonlinear operators and nonlinear equations of evolutions in Banach spaces.Proc. Symp. pure Math. Amer. Math. Soc. Providence, Rhode Island 1976. MR 0405188
Reference: [2] Chandrasekhar S.: Radiative Heat Transfer.Dover, New York, 1960. MR 0111583
Reference: [3] Deimling K.: Nonlinear Functional Analysis.Springer Verlag, 1985. Zbl 0559.47040, MR 0787404
Reference: [4] Dhage B. C.: On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations.J. Math. Phys. Sci. 25 (1988), 603–611. Zbl 0673.47043, MR 0967242
Reference: [5] Dhage B. C.: A fixed point theorem and applications to nonlinear integral equations.Proc. Internat. Symp. Nonlinear Anal. Appl. Bio-Math., Waltair, India (1987), 53–59.
Reference: [6] Dhage B. C.: On $\alpha $-condensing mappings in Banach algebras.The Math. Student 6 (1994), 146–152. Zbl 0882.47033, MR 1292381
Reference: [7] Dhage B. C.: On a fixed point theorem of Krasnoselskii type.Electron. J. Qual. Theory Differ. Equ. 2002, No. 6, 9 pp. (electronic). MR 1895277
Reference: [8] Dhage B. C., Ntouyas S. K.: Existence results for nonlinear functional integral equations via a fixed point theorem of Krasnoselskii-Schaefer type.Nonlinear Studies 9(3)(2002), 307–317. MR 1918909
Reference: [9] Dhage B. C., Jahagirdar P. G.: On nonlinear integral equations in Banach algebras.Applied Sciences Periodical II (2000), 131–133. MR 1840872
Reference: [10] Dhage B. C., O’Regan D.: A fixed point theorem in Banach algebras with applications to functional integral equations.Funct. Differ. Equ. 7(3-4)(2000), 259–267. Zbl 1040.45003, MR 1940503
Reference: [11] Dugundji J., Granas A.: Fixed point theory.Monographie Matematyczne, Warsaw, 1982. Zbl 0483.47038
Reference: [12] Granas A., Guenther R. B., Lee J. W.: Some existence principles in the Caratherodony theory of nonlinear differential system.J. Math. Pures Appl. 70 (1991), 153–196. MR 1103033
Reference: [13] Nashed M. Z., Wong J. S. W.: Some variants of a fixed point theorem of Krasnoselskii and applications to nonlinear integral equations.J. Math. Mech. 18 (1969), 767–777. MR 0238140
Reference: [14] Ntouyas S. K., Tsamatos P. G.: A fixed point theorem of Krasnoselskii-nonlinear alternative type with applications to functional integral equations.Differential Equations Dynam. Systems 7(2) (1999), 139–146. MR 1860784
Reference: [15] Subramanyam P. V., Sundarsanam S. K.: A note on functional integral equations.Differential Equations Dynam. Systems 4 (1996), 473–478.
Reference: [16] Zeidler E.: Nonlinear Functional Analysis and Its Applications I.Springer Verlag, 1985. MR 0816732
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_2.pdf 240.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo