Title:
|
On generalized “ham sandwich” theorems (English) |
Author:
|
Golasiński, Marek |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
42 |
Issue:
|
1 |
Year:
|
2006 |
Pages:
|
25-30 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied. (English) |
Keyword:
|
Lebesgue (signed) measure |
Keyword:
|
polynomial |
Keyword:
|
random vector |
Keyword:
|
real affine variety |
MSC:
|
12D10 |
MSC:
|
14P05 |
MSC:
|
58C07 |
idZBL:
|
Zbl 1164.58312 |
idMR:
|
MR2227109 |
. |
Date available:
|
2008-06-06T22:47:02Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/107978 |
. |
Reference:
|
[1] Arens R.: On sandwich slicing.Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. MR 0588764 |
Reference:
|
[2] Borsuk K.: Drei Sätze über die $n$-dimensionale euklidische Sphäre.Fund. Math. 20 (1933), 177–190. Zbl 0006.42403 |
Reference:
|
[3] Dugundij J., Granas A.: Fixed point theory, Vol.I.Monografie Matematyczne 61, PWN, Warsaw 1982. |
Reference:
|
[4] Gray B.: Homotopy theory.New York, San Francisco, London 1975. Zbl 0322.55001, MR 0402714 |
Reference:
|
[5] Halmos P. R.: Measure theory.Toronto, New York, London 1950. Zbl 0040.16802, MR 0033869 |
Reference:
|
[6] Hill T.: Hyperplane medians for random vectors.Amer. Math. Monthly 95 (5) (1988), 437–441. Zbl 0643.60011, MR 0937533 |
Reference:
|
[7] Hobby C. R., Rice J. R.: A moment problem in $L_1$-approximation.Proc. Amer. Math. Soc. 16 (1965), 665–670. MR 0178292 |
Reference:
|
[8] Pinkus A.: A simple proof of the Hobby-Rice theorem.Proc. Amer. Math. Soc. 60 (1976), 82–84. MR 0425470 |
Reference:
|
[9] Peters J. V.: The ham sandwich theorem for some related results.Rocky Mountain J. Math. 11 (3) (1981), 473–482. MR 0722580 |
Reference:
|
[10] Steinhaus H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles.Fund. Math. 33 (1945), 245–263. Zbl 0061.38404, MR 0017514 |
Reference:
|
[11] Steinhaus H.: Kalejdoskop matematyczny.PWN, Warszawa (1956). |
Reference:
|
[12] Steinlein H.: Spheres and symmetry, Borsuk’s antipodal theorem.Topol. Methods Nonlinear Anal. 1 (1993), 15–33. Zbl 0795.55004, MR 1215255 |
Reference:
|
[13] Stone A., Tukey J. W.: Generalized “sandwich” theorems.Duke Math. J. 9 (1942), 356–359. Zbl 0061.38405, MR 0007036 |
. |