Previous |  Up |  Next

Article

Title: On generalized “ham sandwich” theorems (English)
Author: Golasiński, Marek
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 1
Year: 2006
Pages: 25-30
Summary lang: English
.
Category: math
.
Summary: In this short note we utilize the Borsuk-Ulam Anitpodal Theorem to present a simple proof of the following generalization of the “Ham Sandwich Theorem”: Let $A_1,\ldots ,A_m\subseteq \mathbb {R}^n$ be subsets with finite Lebesgue measure. Then, for any sequence $f_0,\ldots ,f_m$ of $\mathbb {R}$-linearly independent polynomials in the polynomial ring $\mathbb {R}[X_1,\ldots ,X_n]$ there are real numbers $\lambda _0,\ldots ,\lambda _m$, not all zero, such that the real affine variety $\lbrace x\in \mathbb {R}^n;\,\lambda _0f_0(x)+\cdots +\lambda _mf_m(x)=0 \rbrace $ simultaneously bisects each of subsets $A_k$, $k=1,\ldots ,m$. Then some its applications are studied. (English)
Keyword: Lebesgue (signed) measure
Keyword: polynomial
Keyword: random vector
Keyword: real affine variety
MSC: 12D10
MSC: 14P05
MSC: 58C07
idZBL: Zbl 1164.58312
idMR: MR2227109
.
Date available: 2008-06-06T22:47:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107978
.
Reference: [1] Arens R.: On sandwich slicing.Topology (Proc. Fourth Colloq., Budapest, 1978), vol. I, 57–60, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980. MR 0588764
Reference: [2] Borsuk K.: Drei Sätze über die $n$-dimensionale euklidische Sphäre.Fund. Math. 20 (1933), 177–190. Zbl 0006.42403
Reference: [3] Dugundij J., Granas A.: Fixed point theory, Vol.I.Monografie Matematyczne 61, PWN, Warsaw 1982.
Reference: [4] Gray B.: Homotopy theory.New York, San Francisco, London 1975. Zbl 0322.55001, MR 0402714
Reference: [5] Halmos P. R.: Measure theory.Toronto, New York, London 1950. Zbl 0040.16802, MR 0033869
Reference: [6] Hill T.: Hyperplane medians for random vectors.Amer. Math. Monthly 95 (5) (1988), 437–441. Zbl 0643.60011, MR 0937533
Reference: [7] Hobby C. R., Rice J. R.: A moment problem in $L_1$-approximation.Proc. Amer. Math. Soc. 16 (1965), 665–670. MR 0178292
Reference: [8] Pinkus A.: A simple proof of the Hobby-Rice theorem.Proc. Amer. Math. Soc. 60 (1976), 82–84. MR 0425470
Reference: [9] Peters J. V.: The ham sandwich theorem for some related results.Rocky Mountain J. Math. 11 (3) (1981), 473–482. MR 0722580
Reference: [10] Steinhaus H.: Sur la division des ensembles de l’espace par les plans et des ensembles plans par les cercles.Fund. Math. 33 (1945), 245–263. Zbl 0061.38404, MR 0017514
Reference: [11] Steinhaus H.: Kalejdoskop matematyczny.PWN, Warszawa (1956).
Reference: [12] Steinlein H.: Spheres and symmetry, Borsuk’s antipodal theorem.Topol. Methods Nonlinear Anal. 1 (1993), 15–33. Zbl 0795.55004, MR 1215255
Reference: [13] Stone A., Tukey J. W.: Generalized “sandwich” theorems.Duke Math. J. 9 (1942), 356–359. Zbl 0061.38405, MR 0007036
.

Files

Files Size Format View
ArchMathRetro_042-2006-1_3.pdf 203.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo