Previous |  Up |  Next

Article

Title: Oscillation criteria for second order nonlinear differential equations (English)
Author: Baculíková, Blanka
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 2
Year: 2006
Pages: 141-149
Summary lang: English
.
Category: math
.
Summary: Our aim in this paper is to present criteria for oscillation of the nonlinear differential equation \[ u^{\prime \prime }(t)+p(t)f\big (u(g(t))\big )=0\,. \] The obtained oscillatory criteria improve existing ones. (English)
Keyword: Oscillatory solution
MSC: 34C10
MSC: 34C15
MSC: 34K11
idZBL: Zbl 1164.34499
idMR: MR2240351
.
Date available: 2008-06-06T22:47:42Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/107990
.
Reference: [1] Kiguradze I. T.: On the oscillation of solutions of the equation $d^{m}u/dt^{m}+a(t)|u|^{n}sign\,u=0$.Mat. Sb. 65 (1964), 172–187. (Russian) Zbl 0135.14302, MR 0173060
Reference: [2] Džurina J.: The oscillation of a differential equation of second order with deviating argument.Math. Slovaca 42, No. 3 (1992), 317–324. Zbl 0756.34069, MR 1182961
Reference: [3] Ladde G. S., Lakshmikhantam V., Zhang B. G.: Oscillation theory of differential equations with deviating arguments.Dekker, New York, 1987. MR 1017244
Reference: [4] Džurina J.: Comparison theorems for nonlinear ODEs.Math. Slovaca 42, No. 3 (1992), 299–315. MR 1182960
Reference: [5] Džurina J.: Oscillation of a second order delay differential equations.Arch. Math. (Brno) 33, No. 4 (1997), 309–314. MR 1601333
Reference: [6] Kiguradze I. T., Chanturia T. A.: Asymtotic properties of solutions of nonautonomous ordinary differential equations.Nauka, Moscow, 1990.
Reference: [7] Grace S. R.: Oscillation theorems for nonlinear differential equations of second order.J. Math. Anal. Appl. 171 (1992), 220–241. Zbl 0767.34017, MR 1192503
Reference: [8] Philos, Ch. G.: Oscillation theorems for linear differential equations of second order.Arch. Math. (Basel) 53(5) (1989), 482–492. Zbl 0661.34030, MR 1019162
Reference: [9] Rogovchenko, Yu. V.: Oscillation theorems for second order equations with damping.Nonlinear Anal. (1999). MR 1764033
Reference: [10] Rogovchenko, Yu. V.: Oscillation criteria for second order nonlinear perturbed differential equations.J. Math. Anal. Appl. 215 (1997), 334–357. Zbl 0892.34031, MR 1490755
Reference: [11] Rogovchenko, Yu. V.: Oscillation criteria for certain nonlinear differential equations.J. Math. Anal. Appl. 229 (1999), 399–416. Zbl 0921.34034, MR 1666412
Reference: [12] Yan J.: Oscillation theorems for second order linear differential equations with damping.Proc. Amer. Math. Soc. 98 (1986), 276–282. Zbl 0622.34027, MR 0854033
Reference: [13] Agarwal R., Grace S. R., O’Regan D.: Oscillation theory for second order dynamic equations.Taylor & Francis, 2003. Zbl 1043.34032, MR 1965832
Reference: [14] Kirane M., Rogovchenko, Yu. V.: On oscillation of nonlinear second order differential equation with damping term.Appl. Math. Comput. 117 (2001), 177–192. MR 1806045
Reference: [15] Shaker S. H.: Oscillation criteria of hyperbolic equations with deviating argument.Publ. Math. Debrecen, (2003), 165–185. MR 1956808
.

Files

Files Size Format View
ArchMathRetro_042-2006-2_5.pdf 205.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo