Previous |  Up |  Next

Article

Title: Singular BGG sequences for the even orthogonal case (English)
Author: Krump, Lukáš
Author: Souček, Vladimír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 267-278
Summary lang: English
.
Category: math
.
Summary: Locally exact complexes of invariant differential operators are constructed on the homogeneous model for a parabolic geometry for the even orthogonal group. The tool used for the construction is the Penrose transform developed by R. Baston and M. Eastwood. Complexes constructed here belong to the singular infinitesimal character. (English)
MSC: 22Exx
MSC: 58Jxx
idZBL: Zbl 1164.58317
idMR: MR2322413
.
Date available: 2008-06-06T22:49:43Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108033
.
Reference: [1] Baston R.: Quaternionic complexes.J. Geom. Phys. 8 (1992), 29–52. Zbl 0764.53022, MR 1165872
Reference: [2] Baston R. J., Eastwood M. G.: Penrose transform; Its interaction with representation theory.Clarendon Press, Oxford, 1989. Zbl 0726.58004, MR 1038279
Reference: [3] Calderbank D. M. J., Diemer T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences.J. Reine angew. Math. 537 (2001), 67–103. Zbl 0985.58002, MR 1856258
Reference: [4] Čap A.: Two constructions with parabolic geometries.preprint, arXiv:math.DG/0504389 Zbl 1120.53013, MR 2287124
Reference: [5] Čap A., Schichl H.: Parabolic geometries and canonical Cartan connections.Hokkaido Math. J. 29 3 (2000), 453–505. Zbl 0996.53023, MR 1795487
Reference: [6] Čap A., Slovák J., Souček V.: Bernstein-Gelfand-Gelfand sequences.Ann. of Math. (2) 154 1 (2001), 97–113. MR 1847589
Reference: [7] Colombo F., Sabadini A., Sommen F., Struppa D.: Analysis of Dirac systems and computational algebra.Birkhäuser, Basel, 2004. Zbl 1064.30049, MR 2089988
Reference: [8] Franek P.: Generalized Verma module homomorphisms in singular character.submitted to Proc. of the Winter School ’Geometry and Physics’, Srni, 2006. Zbl 1164.22310, MR 2322409
Reference: [9] Krump L.: Construction of BGG sequences for AHS structures.Comment. Math. Univ. Carolin. 42 1 (2001), 31–52, Zbl 1054.53071, MR 1825371
Reference: [10] Krump L., Souček V.: Hasse diagrams for parabolic geometries.Proc. of ’The 22nd Winter School ’Geometry and Physics’, Srní 2002, Rend. Circ. Mat. Palermo (2) Suppl. 71 (2003). Zbl 1047.53014, MR 1982440
Reference: [11] Nacinovich M.: Complex analysis and complexes of differential operators.LNM 950, Springer-Verlag, Berlin, 1980. MR 0672785
Reference: [12] Sharpe R. W.: Differential geometry.Grad. Texts in Math. 166 (1997). Zbl 0876.53001, MR 1453120
Reference: [13] Slovák J.: Parabolic geometries.Research Lecture Notes, Part of DrSc. Dissertation, Preprint IGA 11/97, electronically available at www.maths.adelaide.edu.au.
Reference: [14] Šmíd D.: The BGG diagram for contact orthogonal geometry of even dimension.Acta Univ. Carolin. Math. Phys. 45 (2004), 79–96. Zbl 1138.17310, MR 2109696
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_14.pdf 214.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo