Previous |  Up |  Next


Title: Symplectic spinor valued forms and invariant operators acting between them (English)
Author: Krýsl, Svatopluk
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 279-290
Summary lang: English
Category: math
Summary: Exterior differential forms with values in the (Kostant’s) symplectic spinor bundle on a manifold with a given metaplectic structure are decomposed into invariant subspaces. Projections to these invariant subspaces of a covariant derivative associated to a torsion-free symplectic connection are described. (English)
MSC: 53C27
MSC: 53D05
MSC: 58J60
idZBL: Zbl 1164.58320
idMR: MR2322414
Date available: 2008-06-06T22:49:46Z
Last updated: 2012-05-10
Stable URL:
Reference: [1] Baldoni W.: General Representation theory of real reductive Lie groups in Bailey, T. N.: Representation Theory and Automorphic Forms.Edinburgh (1996), 61–72. MR 1476492
Reference: [2] Britten D. J., Hooper J., Lemire F. W.: Simple $C_n$-modules with multiplicities 1 and application.Canad. J. Phys. 72 (1994), 326–335. MR 1297597
Reference: [3] Britten D. J., Lemire F. W.: On modules of bounded multiplicities for the symplectic algebra.Trans. Amer. Math. Soc. 351, No. 8 (1999), 3413–3431. MR 1615943
Reference: [4] Delanghe R., Sommen F., Souèek V.: Clifford Algebra and Spinor-valued Functions.Math. Appl., Vol. 53, 1992.
Reference: [5] Goodman R., Wallach N.: Representations and Invariants of the Classical Groups.Cambridge University Press, Cambridge, 2003. Zbl 1173.22001
Reference: [6] Green M. B., Hull C. M.: Covariant quantum mechanics of the superstring.Phys. Lett. B 225 (1989), 57–65. MR 1006387
Reference: [7] Habermann K.: Symplectic Dirac Operators on Kähler Manifolds.Math. Nachr. 211 (2000), 37–62. MR 1743488
Reference: [8] Humphreys J. E.: Finite and infinite dimensional modules for semisimple Lie algebras, Lie theories and their applications.Lie Theor. Appl., Proc. Ann. Semin. Can. Math. Congr., Kingston 1977 (1978), 1–64. MR 0500456
Reference: [9] Kac V. G., Wakimoto M.: Modular invariant representations of infinite dimensional Lie algebras and superalgebras.Proc. Natl. Acad. Sci. USA 85, No. 14 (1988), 4956–4960. Zbl 0652.17010, MR 0949675
Reference: [10] Kadlčáková L.: Dirac operator in parabolic contact symplectic geometry.Ph.D. thesis, Charles University Prague, Prague, 2001.
Reference: [11] Kashiwara M., Vergne M.: On the Segal-Shale-Weil representation and harmonic polynomials.Invent. Math. 44, No. 1 (1978), 1–49. MR 0463359
Reference: [12] Klein A.: Eine Fouriertransformation für symplektische Spinoren und Anwendungen in der Quantisierung.Diploma Thesis, Technische Universität Berlin, Berlin, 2000.
Reference: [13] Kostant B.: On the Tensor Product of a Finite and an Infinite Dimensional Representations.J. Funct. Anal. 20 (1975), 257–285. MR 0414796
Reference: [14] Kostant B.: Symplectic Spinors.Sympos. Math. XIV (1974), 139–152. Zbl 0321.58015, MR 0400304
Reference: [15] Krýsl S.: Invariant differential operators for contact projective geometries.Ph.D. thesis, Charles University Prague, Prague, 2004.
Reference: [16] Krýsl S.: Decomposition of the tensor product of the defining representation and a higher symplectic spinor module over $\mathfrak{sp}(2n,\mathbb{C})$.to appear in J. Lie Theory 17, No. 1 (2007), 63–72. MR 2286881
Reference: [17] Reuter M.: Symplectic Dirac-Kähler Fields.J. Math. Phys. 40 (1999), 5593–5640; electronically available at hep-th/9910085. Zbl 0968.81037, MR 1722329


Files Size Format View
ArchMathRetro_042-2006-5_15.pdf 270.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo