Previous |  Up |  Next

Article

Title: Finely differentiable monogenic functions (English)
Author: Lávička, Roman
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 301-305
Summary lang: English
.
Category: math
.
Summary: Since 1970’s B. Fuglede and others have been studying finely holomorhic functions, i.e., ‘holomorphic’ functions defined on the so-called fine domains which are not necessarily open in the usual sense. This note is a survey of finely monogenic functions which were introduced in (Lávička, R., A generalisation of monogenic functions to fine domains, preprint.) like a higher dimensional analogue of finely holomorphic functions. (English)
MSC: 30G35
MSC: 31C40
idZBL: Zbl 1164.30402
idMR: MR2322416
.
Date available: 2008-06-06T22:49:58Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108036
.
Reference: [1] Armitage D. H., Gardiner S. J.: Classical Potential Theory.Springer, London, 2001. Zbl 0972.31001, MR 1801253
Reference: [2] Borel É.: Leçons sur les fonctions monogènes uniformes d’une variable complexe.Gauthier Villars, Paris, 1917.
Reference: [3] Fuglede B.: Finely Harmonic Functions.Lecture Notes in Math. 289, Springer, Berlin, 1972. Zbl 0248.31010, MR 0450590
Reference: [4] Fuglede B.: Fine topology and finely holomorphic functions.In: Proc. 18th Scandinavian Congr. Math., Aarhus, 1980, Birkhäuser, Boston, 1981, 22–38. MR 0633349
Reference: [5] Fuglede B.: Sur les fonctions finement holomorphes.Ann. Inst. Fourier, Grenoble 31 (4) (1981), 57–88. Zbl 0445.30040, MR 0644343
Reference: [6] Fuglede B.: Fonctions BLD et fonctions finement surharmoniques.In: Séminaire de Théorie du Potentiel, Paris, No. 6, Lecture Notes in Math. 906, Springer, Berlin, 1982, 126–157. Zbl 0484.31003, MR 0663563
Reference: [7] Fuglede B.: Fonctions finement holomorphes de plusieurs variables - un essai.Lecture Notes in Math. 1198, Springer, Berlin, 1986, 133–145. Zbl 0595.32008, MR 0874767
Reference: [8] Fuglede B.: Finely Holomorphic Functions.A Survey, Rev. Roumaine Math. Pures Appl. 33 (4) (1988), 283–295. Zbl 0671.31006, MR 0950128
Reference: [9] Gilbert J. E., Murray M. A. M.: Clifford algebras and Dirac operators in harmonic analysis.Cambridge studies in advanced mathematics, vol. 26, Cambridge, 1991. Zbl 0733.43001, MR 1130821
Reference: [10] Kilpeläinen T., Malý J.: Supersolutions to degenerate elliptic equations on quasi open sets.Commun. Partial Differential Equations 17 (3&4) (1992), 371–405. MR 1163430
Reference: [11] Lávička R.: A generalisation of Fueter’s monogenic functions to fine domains.to appear in Rend. Circ. Mat. Palermo (2) Suppl. MR 2287132
Reference: [12] Lávička R.: A generalisation of monogenic functions to fine domains.preprint. MR 2490593
Reference: [13] Lávička R.: Finely continuously differentiable functions.preprint. Zbl 1206.31010, MR 2462441
Reference: [14] Lyons T.: Finely harmonic functions need not be quasi-analytic.Bull. London Math. Soc. 16 (1984), 413–415. Zbl 0541.31002, MR 0749451
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_17.pdf 202.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo