Previous |  Up |  Next

Article

Title: A brief review of supersymmetric non-linear sigma models and generalized complex geometry (English)
Author: Lindström, Ulf
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 42
Issue: 5
Year: 2006
Pages: 307-318
Summary lang: English
.
Category: math
.
Summary: This is a review of the relation between supersymmetric non-linear sigma models and target space geometry. In particular, we report on the derivation of generalized Kähler geometry from sigma models with additional spinorial superfields. Some of the results reviewed are: Generalized complex geometry from sigma models in the Lagrangian formulation; Coordinatization of generalized Kähler geometry in terms of chiral, twisted chiral and semi-chiral superfields; Generalized Kähler geometry from sigma models in the Hamiltonian formulation. (English)
MSC: 53C25
MSC: 53C80
MSC: 81T60
idZBL: Zbl 1164.53400
idMR: MR2322417
.
Date available: 2008-06-06T22:50:01Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108037
.
Reference: [1] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. I.Comm. Math. Phys. 233, 403 (2003) [arXiv:hep-th/0111161]. Zbl 1028.81044, MR 1962116
Reference: [2] Albertsson C., Lindström U., Zabzine M.: $N = 1$ supersymmetric sigma model with boundaries. II.Nuclear Phys. B 678, 295 (2004) [arXiv:hep-th/0202069]. Zbl 1097.81548, MR 2022994
Reference: [3] Alekseev A., Strobl T.: Current algebra and differential geometry.JHEP 0503 (2005), 035 [arXiv:hep-th/0410183]. MR 2151966
Reference: [4] Alvarez-Gaumé L., Freedman D. Z.: Geometrical structure and ultraviolet finiteness in the supersymmetric sigma model.Comm. Math. Phys. 80, 443 (1981) MR 0626710
Reference: [5] Bergamin L.: Generalized complex geometry and the Poisson sigma model.Modern Phys. Lett. A 20, 985 (2005) [arXiv:hep-th/0409283]. Zbl 1067.81046, MR 2148015
Reference: [6] Bredthauer A., Lindström U., Persson J., Zabzine M.: Generalized Kaehler geometry from supersymmetric sigma models.arXiv:hep-th/0603130. Zbl 1105.53053, MR 2260375
Reference: [7] Bredthauer A., Lindström U., Persson J.: First-order supersymmetric sigma models and target space geometry.JHEP 0601, 144 (2006) [arXiv:hep-th/0508228]. MR 2200293
Reference: [8] Buscher T., Lindström U., Roček M.: New supersymmetric sigma models with Wess-Zumino terms.Phys. Lett. B202, 94 (1988). MR 0930852
Reference: [9] Calvo I.: Supersymmetric WZ-Poisson sigma model and twisted generalized complex geometry.arXiv:hep-th/0511179. Zbl 1105.53063, MR 2247462
Reference: [10] Gates S. J., Hull C. M., Roček M.: Twisted multiplets and new supersymmetric nonlinear sigma models.Nuclear Phys. B248 (1984) 157.
Reference: [11] Grisaru M. T., Massar M., Sevrin A., Troost J.: The quantum geometry of $N = (2,2)$ non-linear sigma-models.Phys. Lett. B412, 53 (1997) [arXiv:hep-th/9706218]. MR 1603804
Reference: [12] Gualtieri M.: Generalized complex geometry.Oxford University DPhil thesis, [arXiv:math. DG/0401221]. Zbl 1235.32020, MR 2811595
Reference: [13] Hitchin N.: Generalized Calabi-Yau manifolds.Quart. J. Math. 54, No. 3 (2003), 281–308, [arXiv:math.DG/0209099]. Zbl 1076.32019, MR 2013140
Reference: [14] Hitchin N.: Instantons, Poisson structures and generalized Kähler geometry.[arXiv:math. DG/0503432]. Zbl 1110.53056, MR 2217300
Reference: [15] Howe P. S., Sierra G.: Two-dimensional supersymmetric nonlinear sigma models with torsion.Phys. Lett. B148, 451 (1984). MR 0769268
Reference: [16] Howe P. S., Lindström U., Wulff L.: Superstrings with boundary fermions.JHEP 0508, 041 (2005) [arXiv:hep-th/0505067]. MR 2165805
Reference: [17] Howe P. S., Lindström U., Stojevic V.: Special holonomy sigma models with boundaries.JHEP 0601, 159 (2006) [arXiv:hep-th/0507035]. MR 2200283
Reference: [18] Ivanov I. T., Kim B. B., Roček M.: Complex structures, duality and WZW models in extended superspace.Phys. Lett. B343 (1995) 133 [arXiv:hep-th/9406063]. MR 1315282
Reference: [19] Kapustin A.: Topological strings on noncommutative manifolds.Int. J. Geom. Methods Mod. Phys. 1 (2004) 49 [arXiv:hep-th/0310057]. Zbl 1065.81108, MR 2055289
Reference: [20] Kapustin A., Li Y.: Topological sigma-models with H-flux and twisted generalized complex manifolds.arXiv:hep-th/0407249. Zbl 1192.81310, MR 2322555
Reference: [21] Lindström U., Rocek M., van Nieuwenhuizen P.: Consistent boundary conditions for open strings.Nuclear Phys. B 662, 147 (2003) [arXiv:hep-th/0211266]. Zbl 1027.83027, MR 1984375
Reference: [22] Lindström U., Zabzine M.: N=2 Boundary conditions for non-linear sigma models and Landau-Ginzburg models.JHEP 0302, 006 (2003) [arXiv:hep-th/0209098]. MR 1976901
Reference: [23] Lindström U.: Generalized $N = (2,2)$ supersymmetric non-linear sigma models.Phys. Lett. B587, 216 (2004) [arXiv:hep-th/0401100]. MR 2065031
Reference: [24] Lindström U., Minasian R., Tomasiello A., Zabzine M.: Generalized complex manifolds and supersymmetry.Comm. Math. Phys. 257, 235 (2005) [arXiv:hep-th/0405085]. Zbl 1118.53048, MR 2163575
Reference: [25] Lindström U., Roček M., von Unge R., Zabzine M.: Generalized Kaehler geometry and manifest $N = (2,2)$ supersymmetric nonlinear sigma-models.JHEP 0507 (2005) 067 [arXiv:hep-th/0411186]. MR 2163246
Reference: [26] Lindström U., Rocek M., von Unge R., Zabzine M.: Generalized Kaehler manifolds and off-shell supersymmetry.arXiv:hep-th/0512164. Zbl 1114.81077
Reference: [27] Lyakhovich S., Zabzine M.: Poisson geometry of sigma models with extended supersymmetry.Phys. Lett. B548 (2002) 243 [arXiv:hep-th/0210043]. Zbl 0999.81044, MR 1948542
Reference: [28] Pestun V.: Topological strings in generalized complex space.arXiv:hep-th/0603145. Zbl 1154.81024, MR 2322532
Reference: [29] Sevrin A., Troost J.: Off-shell formulation of $N = 2$ non-linear sigma-models.Nuclear Phys. B492 (1997) 623 [arXiv:hep-th/9610102]. MR 1456119
Reference: [30] Zabzine M.: Hamiltonian perspective on generalized complex structure.arXiv:hep-th/0502137, to appear in Comm. Math. Phys. Zbl 1104.53077, MR 2211820
Reference: [31] Zucchini R.: A sigma model field theoretic realization of Hitchin’s generalized complex geometry.JHEP 0411 (2004) 045 [arXiv:hep-th/0409181]. MR 2119918
Reference: [32] Zumino B.: Supersymmetry and Kahler manifolds.Phys. Lett. B 87, 203 (1979).
.

Files

Files Size Format View
ArchMathRetro_042-2006-5_18.pdf 244.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo