Previous |  Up |  Next

Article

Title: Calculations in new sequence spaces (English)
Author: de Malafosse, Bruno
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 1
Year: 2007
Pages: 1-18
Summary lang: English
.
Category: math
.
Summary: In this paper we define new sequence spaces using the concepts of strong summability and boundedness of index $p>0$ of $r$-th order difference sequences. We establish sufficient conditions for these spaces to reduce to certain spaces of null and bounded sequences. (English)
Keyword: infinite linear system
Keyword: operator of first order difference
Keyword: Banach algebra with identity
Keyword: BK space
MSC: 40H05
MSC: 46A45
idZBL: Zbl 1164.40013
idMR: MR2310120
.
Date available: 2008-06-06T22:50:18Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108045
.
Reference: [1] Maddox I. J.: Infinite matrices of operators.Springer-Verlag, Berlin, Heidelberg and New York, 1980. Zbl 0424.40002, MR 0568707
Reference: [2] de Malafosse B.: Properties of some sets of sequences and application to the spaces of bounded difference sequences of order $\mu $.Hokkaido Math. J. 31 (2002), 283–299. Zbl 1016.40002, MR 1914961
Reference: [3] de Malafosse B.: Sets of sequences that are strongly $\tau $-bounded and matrix transformations between these sets.Demonstratio Math. 36 1 (2003), 155–171. Zbl 1037.46008, MR 1968499
Reference: [4] de Malafosse B.: Variation of an element in the operator of first difference.Novi Sad J. Math. 32 1, (2002), 141–158. MR 1947951
Reference: [5] de Malafosse B.: On the set of sequences that are strongly $\alpha $-bounded and $\alpha $-convergent to naught with index $p$.Seminar. Mat. Torino 61 (2003), 13–32. MR 2034596
Reference: [6] de Malafosse B.: On matrix transformations and sequence spaces.Rend. Circ. Mat. Palermo (2) 52 (2003), 189–210. Zbl 1194.46005, MR 2002026
Reference: [7] de Malafosse B.: On some BK space.Internat. J. Math. Math. Sci. 28 (2003), 1783–1801. MR 1986671
Reference: [8] de Malafosse B.: Calculations on some sequence spaces.Internat. J. Math. Math. Sci. 29–32 (2004), 1653–1670. Zbl 1082.46007, MR 2085086
Reference: [9] de Malafosse B., Malkowsky E.: Sequence spaces and inverse of an infinite matrix.Rend. Circ. Mat. Palermo (2) 51 (2002), 277–294. Zbl 1194.46006, MR 1916930
Reference: [10] de Malafosse B., Malkowsky E.: Matrix transformations in the sets $\chi \left( \overline{N}_{p}\overline{N}_{q}\right) $ where $\chi $ is in the form s$_{\xi }$, or s$_{\xi }^{{{}^{\circ }}}$, or s$_{\xi }^{\left( c\right) }$.Filomat 17 (2003), 85–106.
Reference: [11] Malkowsky E.: Linear operators in certain BK spaces.Bolyai Soc. Math. Stud. 5 (1996), 259–273. Zbl 0861.40007, MR 1432674
Reference: [12] Malkowsky E.: Linear operators between some matrix domains.Rend. Circ. Mat. Palermo (2) 68 (2002), 641–655. Zbl 1028.46015, MR 1975475
Reference: [13] Malkowsky E., Parashar S. D.: Matrix transformations in spaces of bounded and convergent difference sequences of order $m$.Analysis 17 (1997), 87–97. Zbl 0872.40002, MR 1451207
Reference: [14] Malkowsky E., Rakočević V.: An introduction into the theory of sequence spaces and measure of noncompactness.Zb. Rad. (Beogr.) 9 (17) (2000), 143–243. MR 1780493
Reference: [15] Wilansky A.: Summability through Functional Analysis.North-Holland Math. Stud. 85, 1984. Zbl 0531.40008, MR 0738632
.

Files

Files Size Format View
ArchMathRetro_043-2007-1_1.pdf 279.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo