Title:
|
Classification of rings satisfying some constraints on subsets (English) |
Author:
|
Khan, Moharram A. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
19-29 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be an associative ring with identity $1$ and $J(R)$ the Jacobson radical of $R$. Suppose that $m\ge 1$ is a fixed positive integer and $R$ an $m$-torsion-free ring with $1$. In the present paper, it is shown that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m]=0$ for all $x,y\in R\backslash J(R)$ and (ii) $[x,[x,y^m]]=0$, for all $x,y\in R\backslash J(R)$. This result is also valid if (ii) is replaced by (ii)’ $[(yx)^mx^m-x^m(xy)^m,x]=0$, for all $x,y\in R\backslash N(R)$. Our results generalize many well-known commutativity theorems (cf. [1], [2], [3], [4], [5], [6], [9], [10], [11] and [14]). (English) |
Keyword:
|
Jacobson radical |
Keyword:
|
nil commutator |
Keyword:
|
periodic ring |
MSC:
|
16U80 |
idZBL:
|
Zbl 1156.16304 |
idMR:
|
MR2310121 |
. |
Date available:
|
2008-06-06T22:50:21Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108046 |
. |
Reference:
|
[1] Abu-Khuzam H., Tominaga H., Yaqub A.: Commutativity theorems for $s$-unital rings satisfying polynomial identities.Math. J. Okayama Univ. 22 (1980), 111–114. Zbl 0451.16023, MR 0595791 |
Reference:
|
[2] Abu-Khuzam H.: A commutativity theorem for periodic rings.Math. Japon. 32 (1987), 1–3. Zbl 0609.16020, MR 0886192 |
Reference:
|
[3] Abu-Khuzam H., Bell H. E., Yaqub A.: Commutativity of rings satisfying certain polynomial identities.Bull. Austral. Math. Soc. 44 (1991), 63–69. Zbl 0721.16020, MR 1120394 |
Reference:
|
[4] Abu-Khuzam H., Yaqub A.: Commutativity of rings satisfying some polynomial constraints.Acta Math. Hungar. 67 (1995), 207–217. MR 1315805 |
Reference:
|
[5] Bell H. E.: Some commutativity results for periodic rings.Acta Math. Acad. Sci. Hungar. 28 (1976), 279–283. Zbl 0335.16035, MR 0419535 |
Reference:
|
[6] Bell H. E.: On rings with commutativity powers.Math. Japon. 24 (1979), 473–478. MR 0557482 |
Reference:
|
[7] Herstein I. N.: A note on rings with central nilpotent elements.Proc. Amer. Math. Soc. 5 (1954), 620. Zbl 0055.26003, MR 0062714 |
Reference:
|
[8] Herstein I. N.: A commutativity theorem.J. Algebra 38 (1976), 112–118. Zbl 0323.16014, MR 0396687 |
Reference:
|
[9] Herstein I. N.: Power maps in rings.Michigan Math. J. 8 (1961), 29–32. Zbl 0096.25701, MR 0118741 |
Reference:
|
[10] Hirano Y., Hongon M., Tominaga H.: Commutativity theorems for certain rings.Math. J. Okayama Univ. 22 (1980), 65–72. MR 0573674 |
Reference:
|
[11] Hongan M., Tominaga H.: Some commutativity theorems for semiprime rings.Hokkaido Math. J. 10 (1981), 271–277. MR 0662304 |
Reference:
|
[12] Jacobson N.: Structure of Rings.Amer. Math. Soc. Colloq. Publ. Providence 1964. |
Reference:
|
[13] Kezlan T. P.: A note on commutativity of semiprime $PI$-rings.Math. Japon. 27 (1982), 267–268. Zbl 0481.16013, MR 0655230 |
Reference:
|
[14] Khan M. A.: Commutativity of rings with constraints involving a subset.Czechoslovak Math. J. 53 (2003), 545–559. Zbl 1080.16508, MR 2000052 |
Reference:
|
[15] Nicholson W. K., Yaqub A.: A commutativity theorem for rings and groups.Canad. Math. Bull. 22 (1979), 419–423. Zbl 0605.16020, MR 0563755 |
. |