Title:
|
On $S$-Noetherian rings (English) |
Author:
|
Liu, Zhongkui |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
43 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
55-60 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated. (English) |
Keyword:
|
$S$-Noetherian ring |
Keyword:
|
generalized power series ring |
Keyword:
|
anti-Archimedean multiplicative set |
Keyword:
|
$S$-finite ideal |
MSC:
|
16P40 |
idZBL:
|
Zbl 1160.16307 |
idMR:
|
MR2310124 |
. |
Date available:
|
2008-06-06T22:50:29Z |
Last updated:
|
2012-05-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/108049 |
. |
Reference:
|
[1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings.Comm. Algebra 26 (1998), 3223–3238. Zbl 0912.13008, MR 1641603 |
Reference:
|
[2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings.Comm. Algebra 30 (2002), 4407–4416. Zbl 1060.13007, MR 1936480 |
Reference:
|
[3] Brookfield G.: Noetherian generalized power series rings.Comm. Algebra 32 (2004), 919–926. Zbl 1062.16049, MR 2063789 |
Reference:
|
[4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain.J. Pure Appl. Algebra 140 (1999), 107–124. Zbl 0971.13012, MR 1693896 |
Reference:
|
[5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials.Comm. Algebra 28 (2000), 803–814. Zbl 0949.16026, MR 1736764 |
Reference:
|
[6] Ribenboim P.: Noetherian rings of generalized power series.J. Pure Appl. Algebra 79 (1992), 293–312. Zbl 0761.13007, MR 1167578 |
Reference:
|
[7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors.J. Algebra 168 (1994), 71–89. Zbl 0806.13011, MR 1289092 |
Reference:
|
[8] Ribenboim P.: Special properties of generalized power series.J. Algebra 173 (1995), 566–586. Zbl 0852.13008, MR 1327869 |
Reference:
|
[9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series.J. Algebra 198 (1997), 327–338. MR 1489900 |
Reference:
|
[10] Varadarajan K.: Noetherian generalized power series rings and modules.Comm. Algebra 29 (2001), 245–251. Zbl 1005.16043, MR 1842494 |
Reference:
|
[11] Varadarajan K.: Generalized power series modules.Comm. Algebra 29 (2001), 1281–1294. Zbl 0988.16035, MR 1842412 |
. |