| Title: | On $S$-Noetherian rings (English) | 
| Author: | Liu, Zhongkui | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 43 | 
| Issue: | 1 | 
| Year: | 2007 | 
| Pages: | 55-60 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | Let $R$ be a commutative ring and $S\subseteq R$ a given multiplicative set. Let $(M,\le )$ be a strictly ordered monoid satisfying the condition that $0\le m$ for every $m\in M$. Then it is shown, under some additional conditions, that the generalized power series ring $[[R^{M,\le }]]$ is $S$-Noetherian if and only if $R$ is $S$-Noetherian and $M$ is finitely generated. (English) | 
| Keyword: | $S$-Noetherian ring | 
| Keyword: | generalized power series ring | 
| Keyword: | anti-Archimedean multiplicative set | 
| Keyword: | $S$-finite ideal | 
| MSC: | 16P40 | 
| idZBL: | Zbl 1160.16307 | 
| idMR: | MR2310124 | 
| . | 
| Date available: | 2008-06-06T22:50:29Z | 
| Last updated: | 2012-05-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/108049 | 
| . | 
| Reference: | [1] Anderson D. D., Kang B. G., Park M. H.: Anti-archimedean rings and power series rings.Comm. Algebra 26 (1998), 3223–3238.  Zbl 0912.13008, MR 1641603 | 
| Reference: | [2] Anderson D. D., Dumitrescu T.: $S$-Noetherian rings.Comm. Algebra 30 (2002), 4407–4416.  Zbl 1060.13007, MR 1936480 | 
| Reference: | [3] Brookfield G.: Noetherian generalized power series rings.Comm. Algebra 32 (2004), 919–926.  Zbl 1062.16049, MR 2063789 | 
| Reference: | [4] Kang B. G., Park M. H.: A localization of a power series ring over a valuation domain.J. Pure Appl. Algebra 140 (1999), 107–124.  Zbl 0971.13012, MR 1693896 | 
| Reference: | [5] Liu Zhongkui: Endomorphism rings of modules of generalized inverse polynomials.Comm. Algebra 28 (2000), 803–814.  Zbl 0949.16026, MR 1736764 | 
| Reference: | [6] Ribenboim P.: Noetherian rings of generalized power series.J. Pure Appl. Algebra 79 (1992), 293–312.  Zbl 0761.13007, MR 1167578 | 
| Reference: | [7] Ribenboim P.: Rings of generalized power series II: units and zero-divisors.J. Algebra 168 (1994), 71–89.  Zbl 0806.13011, MR 1289092 | 
| Reference: | [8] Ribenboim P.: Special properties of generalized power series.J. Algebra 173 (1995), 566–586.  Zbl 0852.13008, MR 1327869 | 
| Reference: | [9] Ribenboim P.: Semisimple rings and von Neumann regular rings of generalized power series.J. Algebra 198 (1997), 327–338.  MR 1489900 | 
| Reference: | [10] Varadarajan K.: Noetherian generalized power series rings and modules.Comm. Algebra 29 (2001), 245–251.  Zbl 1005.16043, MR 1842494 | 
| Reference: | [11] Varadarajan K.: Generalized power series modules.Comm. Algebra 29 (2001), 1281–1294.   Zbl 0988.16035, MR 1842412 | 
| . |