Previous |  Up |  Next

Article

Title: Spectral properties of a certain class of Carleman operators (English)
Author: Bahri, S. M.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 43
Issue: 3
Year: 2007
Pages: 163-175
Summary lang: English
.
Category: math
.
Summary: The object of the present work is to construct all the generalized spectral functions of a certain class of Carleman operators in the Hilbert space $L^{2}\left( X,\mu \right) $ and establish the corresponding expansion theorems, when the deficiency indices are (1,1). This is done by constructing the generalized resolvents of $A$ and then using the Stieltjes inversion formula. (English)
Keyword: spectral theory
Keyword: integral operator
Keyword: defect indices
MSC: 05C38
MSC: 15A15
idZBL: Zbl 1164.05037
idMR: MR2354805
.
Date available: 2008-06-06T22:51:02Z
Last updated: 2012-05-10
Stable URL: http://hdl.handle.net/10338.dmlcz/108062
.
Reference: [1] Akhiezer N. I., Glazman I. M.: Theory of Linear Operators in Hilbert Space.Dover, New York (1993). Zbl 0874.47001, MR 1255973
Reference: [2] Alexandrov E. L.: On the generalized resolvents of symmetric operators.Izv. Vizov Math. N${{}^\circ }$ 7, 1970.
Reference: [3] Bahri S. M.: On the extension of a certain class of Carleman operators.EMS, Z. Anal. Anwend. 26 (2007), 57–64. Zbl 1142.47027, MR 2306105
Reference: [4] Buchwalter H., Tarral D.: Théorie spectrale.Nouvelle série N$^{\circ }$ 8/C, 1982. Zbl 0532.47014, MR 0719649
Reference: [5] Carleman T.: Sur les équations intégrales singulières à noyau réel et symétrique.Uppsala Almquwist Wiksells Boktryckeri, 1923.
Reference: [6] Chatterji S. D.: Cours d’analye T3.Presses polytechniques et universitaires romandes, 1998. MR 1637558
Reference: [7] Gretsky N., Uhl J. J.: Carleman and Korotkov operators on Banach spaces.Acta Sci. Math. 43 (1981), 111–119. Zbl 0483.47033, MR 0621370
Reference: [8] Halmos P. R., Sunder V. S.: Bounded integral operators on $L_{2}$-spaces.Ergeb. Math. Grenzgeb. 96, Springer 1978. Zbl 0389.47001, MR 0517709
Reference: [9] Korotkov V. B.: On characteristic properties of Carleman operators.Sib. Math. J. 11, N$^\circ $1 (1970), 103-127. MR 0283631
Reference: [10] Krein M. G.: On Hermitian operators with deficiency indices one.Dokl. Akad. Nauk SSSR 43 (1944), 339–342. (Russian) MR 0011170
Reference: [11] Krein M. G.: Resolvents of a Hermitian operator with defect index $(m,m)$.Dokl. Akad. Nauk SSSR 52 (1946), 657–660. (Russian) MR 0018341
Reference: [12] Krein M. G., Saakjan S. N.: Some new results in the theory of resolvents of Hermitian operators.Sov. Math. Dokl. 7 (1966), 1086–1089.
Reference: [13] Malamud M. M.: On a formula of the generalized resolvents of a nondensely defined Hermitian operator.Ukrain. Math. J. 44 (1992), 1522–1547. MR 1215039
Reference: [14] Maurin K.: Methods of Hilbert spaces.PWN, 1967. Zbl 0166.10203, MR 0223910
Reference: [15] Naimark M. A.: On spectral functions of a symmetric operator.Izv. Akad. Nauk SSSR 7 (1943), 285–296. (Russian) Zbl 0061.26005, MR 0010790
Reference: [16] von Neumann J.: Allgemeine Eigenwerttheorie hermitescher Funktionaloperatoren.Math. Ann. 102 (1929–30), 49–131. MR 1512569
Reference: [17] Reed M., Simon B.: Methods of Modern Mathematical Physics IV, Analysis of Operators.Academic Press, New York, 1978. Zbl 0401.47001, MR 0493421
Reference: [18] Schep A. R.: Generalized Carleman operators.Indag. Math. 42 (1980), 49–59. Zbl 0431.47028, MR 0565943
Reference: [19] Saakjan, Sh. N.: On the theory of the resolvents of a symmetric operator with infinite deficiency indices.Dokl. Akad. Nauk Arm. SSR 44 (1965), 193–198. (Russian) MR 0196497
Reference: [20] Straus A. V.: Construction of the generalized spectral functions of a Sturm-Liouville differential operator on a half-axis.Izv. Akad. Nauk SSSR Ser. Mat. 19 (1955), 201–220. (Russian) MR 0074642
Reference: [21] Straus A. V.: Extensions and generalized resolvents of a non-densely defined symmetric operator.Math. USSR Izv. 4 (1970), 179–208. MR 0278098
Reference: [22] Targonski G. I.: On Carleman integral operators.Proc. Amer. Math. Soc. 18, N$^\circ $3 (1967). Zbl 0147.12002, MR 0215139
Reference: [23] Weidman J.: Carleman Operators.Manuscripts, Math. N$^\circ $2 (1970), 1–38.
Reference: [24] Weidman J.: Linear Operators in Hilbert Spaces.Spring Verlag, New-York Heidelberg Berlin, 1980. MR 0566954
.

Files

Files Size Format View
ArchMathRetro_043-2007-3_3.pdf 248.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo